Uutiset

Mustaksi luullusta hiilestä saakin kaikki sateenkaaren sävyt

Tutkijat onnistuivat ennustamaan hiilinanoputkien 466 värisävyn kartan. Tutkimuksesta voi olla hyötyä värillisissä ja taipuisissa elektroniikkarakenteissa ja aurinkokennoissa.
Picture: Nan Wei / Nanomaterials Group, Aalto University.
Grafeeniverkon rullaussuunta ja hiilinanoputken halkaisija vaikuttavat atomirakenteeseen ja valon absorboitumiseen. Tutkijat pystyivät mallinsa avulla ennustamaan 466 värin kartan. Kuva: Nan Wei, Aalto-yliopisto.

Hiilinanoputket ovat rakenteeltaan yhden atomikerroksen paksuisia rullattuja grafeeniverkkoja. Ne ovat läpimitaltaan alle yhdestä kolmeen nanometriä ja väriltään yleensä mustia tai tummanharmaita.

Nyt Aalto-yliopiston tutkijat ovat yhdessä yhdysvaltalaisen Ricen yliopiston ja kiinalaisen Pekingin yliopiston kanssa onnistuneet ennustamaan hiilinanoputkien 466 värisävyn kartan.

”Mustana pitämämme hiili voikin näyttää läpinäkyvältä – tai miltä tahansa sateenkaaren väriltä”, sanoo Aalto-yliopiston professori Esko I. Kauppinen.

”Jos valo absorboituu kokonaan hiiliverkkoon, putki näyttää mustalta. Jos taas noin puolet valosta absorboituu putkeen, se näyttää kirkkaalta. Väri taas johtuu siitä, että putken atomirakenteen vuoksi vain tietyt valon värit eli aallonpituudet absorboituvat putkien muodostamaan ohutkalvoon. Ne, jotka eivät absorboidu, heijastuvat nähtävinä väreinä.”

Se, millainen hiilinanoputken atomirakenne on, riippuu grafeeniverkon rullaussuunnasta ja putken halkaisijasta, joka voi olla jopa 50 000 kertaa hiusta ohuempi. Myös ohutkalvon paksuus vaikuttaa valon absorboitumiseen.

466 värin kartta syntyy eri putkien yhdistelmistä. Ohuimmat ja värikkäimmät putket vaikuttavat näkyvään väriin enemmän kuin halkaisijaltaan suuremmat ja haaleamman väriset putket.

850 asteen kuumuudessa

Esko Kauppisen ryhmä on vuosia tutkinut hiilinanoputkia ja niistä tehtäviä, elektroniikan sovelluksissa käytettäviä ohutkalvoja. Tutkimusryhmä onnistui jo aiemmin hallitsemaan hiilinanoputkien valmistusta niin, että ohutkalvoista tuli vihreitä, ruskeita ja hopeanharmaita.

Nyt tutkijat tarkastelivat aavistuksen vihreiden hiilinanoputkien optisen eli näkyvän valon alueen ja värin suhdetta. Esimerkiksi vihreä väri syntyy yhdistelemällä atomirakenteeltaan erilaisia putkia, joilla on kaikilla oma värinsä.

Ricen yliopiston tutkijat pystyivät professori Junichiro Konon johdolla erottamaan ohutkalvosta myös yksittäisen nanoputkirakenteen. Aalto-yliopiston tutkijat laskivat yhdessä Pekingin yliopiston tutkijoiden kanssa kunkin putkirakenteen absorption ja tätä kautta ohutkalvon nähtävän värin, sekä tämän avulla kokeellisesti todensivat ohutkalvon värinmuodostuksen. Kokeellisesti saatu väri vastasi melko tarkkaan tutkijoiden käyttämän mallin antamaa väriennustetta.

Tutkijoiden käyttämä kokeellinen menetelmä oli sama kuin aikaisemmassa tutkimuksessa. Nanoputket kasvatetaan raudan ja hiilen aerosoleista kaasun muodossa yli 850-asteiseksi kuumenevassa kasvatusreaktorissa, ja eriväristen hiilinanoputkien kasvua säädellään reaktoriin lisättävän hiilidioksidin avulla.

”Edellisestä tutkimuksesta lähtien olemme pohtineet, kuinka pystyisimme selittämään hiilinanoputkien värien syntymisen. Hiilen olomuodoista grafiitti ja puuhiili ovat mustaa, ja puhtaat timantit ovat ihmissilmälle värittömiä. Nyt kuitenkin havaitsimme, että yksiseinäiset hiilinanoputket voivat olla minkä tahansa värisiä: esimerkiksi punaisia, sinisiä, vihreitä, ruskeita”, sanoo Pekingin yliopiston professori Nan Wei, joka toimi aikaisemmin tutkijatohtorina Aallossa.

Värillinen ohutkalvo on taipuisaa ja venyvää, ja siitä voi olla hyötyä värillisissä elektroniikkarakenteissa ja aurinkokennoissa.

”Näytön väriä voisi säätää kosketusanturilla vaikkapa kännykässä, muissa kosketusnäytöissä tai ikkunalasin päällä”, Kauppinen sanoo.

Tutkimus voi myös luoda pohjaa uudenlaisille ympäristöystävällisille väriaineille.

Lisätietoa:

Artikkeli: Colors of Single‐Wall Carbon Nanotubes

Aikaisempi uutinen: Tutkijat valmistivat hiilinanoputkista ensimmäistä kertaa värillisiä kalvoja – käyttökohteita kosketusnäytöissä ja uudenlaisissa aurinkokennoissa

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

An artistic rendition of quantum entanglement. Image: Heikka Valja
Mediatiedotteet Julkaistu:

Tutkijat loivat täysin uudenlaisen kvanttitilan, jota voi hyödyntää kvanttimateriaaleissa ja kvanttitietokoneiden kubiteissa

Tutkijat yhdistivät kaksi äärimmäisen ohutta materiaalikerrosta ja havaitsivat kvanttilomittuneen tilan, jossa elektronit käyttäytyivät samoin kuin harvinaisissa maametalliyhdisteissä.
Foresail-1-satelliitti avaruudessa
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Kohti kestävämpää avaruustutkimusta – Foresail-1-satelliitti laukaistaan keväällä 2022

Foresail-1 on Kestävän avaruustieteen ja -tekniikan huippuyksikön ensimmäinen satelliitti. Huippuyksikkö tutkii avaruuden olosuhteita tavoitteinaan kehittää entistä kestävämpiä piensatelliitteja, jotka eivät muutu avaruusromuksi.
Helsingin kaupungin 3D-malli Carla-simulaattorissa
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Ainutlaatuinen virtuaalilaboratorio ennustaa ja ratkoo kaupunkiliikenteen ympäristövaikutuksia

Suomen tekoälykeskus FCAI:n tutkijat alkavat kehittää kestävämpää älyliikennettä tuomalla yhteen simulaattoreita eri aloilta.
Kuva: Tiina ja Antti Herlinin säätiö
Mediatiedotteet Julkaistu:

Ympäristökriisin ratkaisijoista huutava pula - poikkitieteellistä osaamista tarvitaan

Tiina ja Antti Herlinin säätiön rahoittama hanke tuottaa uudenlaisen insinöörioppikirjan ekologisesti kestävien energiaratkaisujen luomiseksi.