Base Styles/Icons/Some/Linkedin/Default Created with Sketch. Base Styles/Icons/lock/open Created with Sketch.

Kvanttifysiikan ja -teknologian tutkimukselle EU:lta miljardirahoitus – Aalto-yliopisto mukana kolmessa projektissa

Aalto University Quantum Bit Silicon Chip. Image: Jan Goetz.

Aalto-yliopiston ryhmät tutkivat ja kehittävät kvanttiviestintäteknologiaa, kvanttioptisiin ilmiöihin perustuvia erityisherkkiä magneettiantureita sekä fotoneja välittäviä kvanttisiruja. Euroopan unioni rahoittaa Quantum Flagship -hanketta miljardilla eurolla kymmeneksi vuodeksi ja siihen osallistuu yli 5000 tutkijaa. Lippulaiva tuo yhteen kvanttifysiikan parhaan tutkimuksen Euroopassa ja edistää uusien kvanttiteknologioiden saamista markkinoille.

Kvanttiteknologian tutkimukseen ja kehittämiseen on viimeisen vuosikymmenen aikana investoitu miljardeja euroja ympäri maailman. Alan sovellusten odotetaan mullistavan monia teollisuuden aloja elektroniikasta, tietojenkäsittelyyn ja materiaalitekniikkaan.

Aalto-yliopistolla on pitkä historia matalien lämpötilojen kvantti-ilmiöiden ja laitteiden perustutkimuksessa sekä uuden teknologian kehittämisessä. EU:n lippulaivassa on mukana useita tutkimusryhmiä Aalto-yliopiston johtamasta Suomen Akatemian kvanttiteknologian kansallisesta huippuyksiköstä Quantum Technology Finland (QTF), jonka tutkimusohjelma kiinteän tilan kvantti-ilmiöiden hallintaan ja teknologioiden kehittämiseen on ainutlaatuinen maailmassa. 

Lippulaivahankkeen projekti Quantum Microwave Communication and Sensing (QMiCS) aikoo hyödyntää lähelle absoluuttista nollapistettä jäähdytettyjen suprajohtavien piirien välittämiä mikroaaltoja ja niiden kvanttimaailman ominaisuuksia: lomittumista ja kvanttiteleportaatiota. Mikroaaltovaloa käytetään jo nyt laajasti elektroniikassa ja langattomassa viestinnässä, mutta mikroaaltojen kvanttitason ominaisuuksia ei ole vielä pystytty juuri hyödyntämään kaupallisessa teknologiassa. Ryhmä suunnittelee usean metrin pituista, mikroaaltojen kvantti-ilmiöitä hyödyntävää verkkokaapelia, jota voisi käyttää tiedonsiirtoon – eräänlaisena kvanttitietokoneita yhdistävänä ”kvanttilähiverkkona”.
 

Tarkoitus on havaita kvanttitiedonsiirron perusilmiöitä, kuten kvanttitilojen teleporttausta mikroaaltofotonien avulla.

Mikko Möttönen

”Tarkoitus on havaita kvanttitiedonsiirron perusilmiöitä, kuten kvanttitilojen teleporttausta mikroaaltofotonien avulla, ja rakentaa ensimmäinen lähiverkko niihin perustuvalle viestinnälle. Kehittämäämme teknologiaa voidaan tulevaisuudessa jalostaa ja toteuttaa esimerkiksi kvanttitutka tai kvanttitietokoneiden internet”, sanoo Mikko Möttönen QMiCS-projektin vastuullinen tutkija Aalto-yliopistossa.

Erityisherkkää anturiteknologiaa lippulaivassa kehittää Miniature Atomic Vapor-Cells Quantum Devices for Sensing and Metrology Applications (macQsimal) -projekti, jossa on mukana Aalto-yliopiston professori Lauri Parkkonen ryhmineen. Projektissa luodaan antureita, jotka mittaavat ennenäkemättömän herkästi magneettikenttiä, aikaa, pyörimisliikettä ja sähkömagneettista säteilyä.

Parkkosen ryhmä suunnittelee ja soveltaa magneettikenttäantureita aivosignaalien mittaamiseen magnetoenkefalografialla eli MEG:llä. He suunnittelevat MEG-anturiston, joka mukautuu tutkittavan henkilön pään kokoon ja muotoon – toisin kuin nykyinen suprajohtavuuteen perustuva anturisto. Aktiivisten aivoalueiden paikantaminen ja erottelu tarkentuvat huomattavasti, mistä on hyötyä niin perustutkimuksessa kuin kliinisissä sovelluksissa, esimerkiksi aivojen epileptisten alueiden paikannuksessa ennen leikkausta.

Magneettikenttäantureita aivosignaalien mittaamiseen magnetoenkefalografialla eli MEG:llä.

”Nykyisiin suprajohtaviin antureihin perustuvat MEG-järjestelmät ovat kalliita ja suurikokoisia niiden vaatiman erittäin matalan lämpötilan takia. Uudet anturit taas ovat pieniä, ne toimivat huoneenlämmössä ja ne saa suoraan potilaan pään pinnalle. Mittaustulokset voivat olla jopa yhtä tarkkoja kuin kallon sisäpuolelta tehtynä, joten uudella teknologialla on mahdollista vähentää epilepsiakirurgiaa edeltäviä, niin ikään kirurgiaa edellyttäviä mittauksia”, Lauri Parkkonen kertoo.

Scalable Two-Dimensional Quantum Integrated Photonics (S2QUIP) kehittää kvanttifotonisia hybridi-mikrosysteemejä, joita voi käyttää monissa arkisissa laitteissa, esimerkiksi tietoliikenteessä. Aalto-yliopiston professori Zhipei Sunin johtama ryhmä pyrkii tekemään kvanttivalolähteistä entistä tehokkaampia, skaalautuvampia ja toiminnoiltaan monipuolisempia.

Tämän teknologian tulevaisuuden käyttömahdollisuudet ovat huikeat monilla eri aloilla.

Zhipei Sun

”Tämän teknologian tulevaisuuden käyttömahdollisuudet ovat huikeat: niitä voidaan käyttää monilla eri aloilla, ei vain tietoliikenteessä, vaan myös kvanttisimulaatioissa, metrologiassa ja erilaisissa sensoreissa”, Zhipei Sun sanoo.

QMiCS ja S2QUIP ovat osa tutkimuksen kansallista huippuyksikköä Quantum Technology Finland QTF. Lippulaivahankkeeseen osallistuu QTF:n kautta myös kaksi VTT:n ryhmää. Kaikki Aallon ja VTT:n ryhmät hyödyntävät tutkimuksessaan kansallista OtaNano-tutkimusinfrastruktuuria.

QMiCS-projektia koordinoi Baijerin tiedeakatemian Walther Meißner -instituutti, macQsimal-projektia Centre suisse d'électronique et de microtechnique ja S2QUIP-projektia Kuninkaallinen teknillinen korkeakoulu

https://qt.eu

Euroopan komission tiedote
 

Lisätietoja:

Mikko Möttönen, tutkijatohtori
Aalto-yliopisto, teknillisen fysiikan laitos
[email protected]
puh. 050 594 0950

Lauri Parkkonen, professori
Aalto-yliopisto, neurotieteen ja lääketieteellisen tekniikan laitos
[email protected]
puh. 040 508 9712

Zhipei Sun, professori
Aalto-yliopisto, elektroniikan ja nanotekniikan laitos
[email protected]
puh. 050 430 2820

Lisää tästä aiheesta

Water droplet on a surface
Tiedotteet Julkaistu:

Itsestään puhdistuvia seiniä ja jäätymättömiä lentokoneen siipiä – voimasensori auttaa uusien vettähylkivien materiaalien kehittämisessä

Tutkijoiden mukaan voimiin perustuvat mittaukset ovat kontaktikulmia parempi tapa tutkia superhydrofobisia pintoja.
Kylmälaboratorio on yksi maailman johtavista matalien lämpötilojen fysiikan, nanoelektroniikan ja kvanttiteknologian tutkimuskeskittymistä. Kuva: Roee Cohen.
Tiedotteet Julkaistu:

Kylmälaboratoriolle miljoonarahoitus – tutkimusinfrastruktuuri on nyt helpommin eurooppalaisten tutkijoiden saatavilla

Kylmälaboratoriossa kehitetään muun muassa kvanttisensoreita, joita tarvitaan nanoelektroniikan tutkimuksessa.
Twitter-konferenssi kokoaa yhteen aivokuvantamisen asiantuntijoita eri puolilta maailmaa. Kuva: Baran Aydogan.
Tiedotteet Julkaistu:

Twitter-konferenssi tavoittaa puoli miljoonaa neurotieteestä kiinnostunutta

Aalto-yliopiston tutkijat koordinoivat jo kolmatta Brain Twitter -konferenssia 14. maaliskuuta. Voit seurata kotisohvaltasi maailman johtavien tutkijoiden keskustelua uusimmista neurotieteen löydöksistä.
Artictic impression of a quantum resonator coupled to environmental modes
Tiedotteet Julkaistu:

Kvanttifyysikot onnistuivat energian häviöiden ja siirtymien hallinnassa

Saavutus on tärkeä askel kvanttitietokoneiden toteuttamisessa ja fysiikan ymmärtämisessä.