Uutiset

Koneoppimisesta apua kemisteille: algoritmien avulla minimienergiapolut ja satulapisteet löytyvät tehokkaammin

Koneoppiminen avaa uusia mahdollisuuksia monille aloille – myös kemian tutkimukseen, minkä osoittaa Suomen tekoälykeskuksessa tehty tuore väitöstutkimus.
Machine learning in theoretical chemistry
Lähde: J. Chem. Phys. 147, 152720 (2017). Julkaistu AIP Publishingin luvalla.

Aalto-yliopiston tohtorikoulutettava Olli-Pekka Koistinen kehitti väitöskirjassaan gaussisiin prosesseihin perustuvia koneoppimisalgoritmeja, jotka tehostavat minimienergiapolkujen ja satulapisteiden etsintää, sekä testasi niiden toimivuutta.

Teoreettisessa kemiassa minimienergiapolkujen ja satulapisteiden määrittäminen on yksi eniten aikaa ja laskentaresursseja kuluttavista tehtävistä. Laskenta-aikaa kuluu etenkin atomikonfiguraation tarkan energian ja gradienttivektorin määrittämiseen. Se joudutaan tekemään erikseen jopa sadoissa konfiguraatioavaruuden pisteissä.

Koneoppimista hyödyntävät menetelmät voivat vähentää tarvittavien havaintopisteiden ja raskaiden energialaskujen määrää murto-osaan siitä, mitä perinteiset menetelmät vaativat, ja siten nopeuttaa ja keventää laskentaa.

Minimienergiapolut kulkevat potentiaalienergiapinnalla, joka kuvaa järjestelmän – esimerkiksi molekyylin – energiaa tiettyjen parametrien suhteen. Yleensä nämä parametrit kertovat atomien sijainnin. Energiapinnan paikalliset minimikohdat vastaavat systeemin vakaita tiloja. Minimienergiapolut yhdistävät näitä vakaita tiloja toisiinsa ja kuvaavat mahdollisia reaktiomekanismeja.

”Suunnistajana ajattelen energiapintaa karttana. Pysyvät atomikonfiguraatiot näkyvät kartassa kuoppina. Minimienergiapolku on reitti kahden tällaisen tilan välillä. Se pysyy koko ajan mahdollisimman matalana. Polun korkein kohta on satulapisteessä, jolloin se pääsee pujahtamaan kuopasta toiseen mahdollisimman matalalta”, Koistinen selittää.

Perinteisesti minimienergiapolkuja ja satulapisteitä on etsitty iteratiivisilla menetelmillä, jotka etenevät energiapinnalla pienin askelin. Koneoppimisen ja tilastollisten mallien avulla aikaisemmat havainnot voidaan käyttää hyväksi energiapinnan mallintamiseksi, jolloin tavoitteeseen voidaan päästä huomattavasti vähemmillä iteraatioilla.

Koneoppiminen tarjoaa siis tehtävään tehokkaamman ja kevyemmän sekä sitä kautta myös aiempaa halvemman ja ympäristöystävällisemmän keinon. Se voi myös avata mahdollisuuksia sellaisten ongelmien tutkimiseen, joihin käytännön resurssit eivät ole aikaisemmin riittäneet. ”Tämä on yksi esimerkki lisää siitä, mihin koneoppimismenetelmiä voi käyttää”, Koistinen sanoo.

Diplomi-insinööriOlli-Pekka Koistinen väittelee torstaina 9. tammikuuta 2020 Aalto-yliopiston perustieteiden korkeakoulussa Kandidaattikeskuksen salissa E (Y124). Väitöskirjan nimi on "Algorithms for Finding Saddle Points and Minimum Energy Paths Using Gaussian Process Regression".

Linkki väitöskirjaan: https://aaltodoc.aalto.fi/handle/123456789/41794

  • Päivitetty:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Henkilö puhuu älykelloon, jossa on hopeinen verkkoranneke ja näytöllä aaltomuoto.
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Äänesi paljastaa enemmän kuin uskot – tutkijat kehittävät keinoja suojata puheeseen kätkeytyvää tietoa

Puheteknologiat yleistyvät vauhdilla, ja samalla kasvaa riski siitä, että ääni paljastaa arkaluonteista tietoa terveydestä, taustoista tai mielipiteistä. Aalto-yliopiston tutkijat kehittävät keinoja mitata ja rajoittaa sitä, mitä kaikkea puheesta voidaan päätellä.
Kolme ihmistä istuu bussipysäkillä, takanaan karttoja ja kylttejä. Yhdellä on reppu maassa.
Tutkimus ja taide Julkaistu:

Aallon vuosi 2025: Kvanttihyppyjä, luovia loikkia ja ratkaisuja parempaan elämään

Kasvua, teknologiaa ja teollisuuden uudistumista, ihmislähtöisiä ratkaisuja, terveys ja arjen hyvinvointi sekä hauskaa arkea ja toimivia yhteisöjä.
arotor adjustable stiffness test setup
Yhteistyö, Tutkimus ja taide Julkaistu:

Miljoonarahoitus uuden sukupolven koneteknologian kehittämiseen – tavoitteena tuottavuusloikka useilla vientialoilla

BEST-hankkeessa kehitetään uudenlaisia tiiviste-, laakerointi- ja vaimennusteknologioita useiden teollisuudenalojen käyttöön.
TAIMI-hanke rakentaa tasa-arvoista työelämää. Kuva: Kauppakorkeakoulu Hanken.
Tutkimus ja taide Julkaistu:

TAIMI-hanke rakentaa tasa-arvoista työelämää – kuusivuotinen konsortiohanke etsii ratkaisuja rekrytoinnin ja osaamisen haasteisiin

Tekoäly muuttaa osaamistarpeita, väestö ikääntyy ja työvoimapula syvenee. Samalla kansainvälisten osaajien potentiaali jää Suomessa usein hyödyntämättä. Näihin työelämän haasteisiin vastaa Strategisen tutkimuksen neuvoston rahoittama kuusivuotinen TAIMI-hanke, jota toteuttaa laaja konsortio.