Uutiset

Äänen suunnan katoaminen voi olla epämukavaa ja jopa vaarallista – tutkijat keksivät, miten ongelma korjataan kuulolaitteissa, pelastajien kuulokkeissa ja VR-sovelluksissa

Uusi signaalinkäsittelyn malli mahdollistaa sekä tarkan tilaäänen toiston että äänen säätämisen esimerkiksi kuulovammaisten tarpeisiin.
Muovinen tutkimuksessa käytetty pää, johon on kiinnitetty mikrofoni.
Tutkijat testasivat mallin toimivuutta laboratoriossa. Kuva: Ville Pulkin tutkimusryhmä

Kuuloaistin tulisi vastata kahteen kysymykseen: mitä ja missä?

Nyt ryhmä Aalto-yliopiston tutkijoita on ratkonut, miten puuttuva suuntatieto voidaan tuottaa mahdollisimman tarkasti tekniikan avulla. Tutkimus nostettiin juuri arvostetun Journal of American Society of Acoustics (JASA) -lehden kansijutuksi.

”Äänen tilallisuuden parantamisessa on kyse elämänlaadun parantamisesta”, kiteyttää artikkelin pääkirjoittaja, tohtorikoulutettava Janani Fernandez, joka on työskennellyt myös sisäkorvaimplanttien kanssa. Signaalinkäsittelyn erikoisosaamista työhön toi tohtorikoulutettava Leo McCormack.

Ihmisen korvalehdillä on tärkeä rooli äänen tulosuunnan määrittämisessä. Kuulolaitteissa mikrofonin sieppaama signaali sen sijaan kulkee vahvistamisen jälkeen ohutputkea pitkin suoraan korvakäytävään. Siksi äänilähteet tuntuvat täyttävän pään, mikä on häiritsevää ja väsyttävää etenkin tilaisuuksissa, joissa on paljon ihmisiä. Kun äänten suunnat katoavat, myös eri puhujien erottaminen toisistaan on vaikeampaa.

JASA:n artikkelissa ryhmä esittää signaalinkäsittelyn mallin, jolla useiden, eri suunnista ääntä keräävien mikrofonien data analysoidaan niin, että äänen tilainformaatio saadaan talteen.

”Vasta sen jälkeen se johdetaan eteenpäin, esimerkiksi kuulolaitteen kompressoriin, joka vahvistaa signaalia kuulijan tarpeisiin sopivaksi. Tämän jälkeen ääni toistetaan kuulijalle käyttäen analysoitua tilainformaatiota, mikä tuottaa luonnollisen tilavaikutelman”, kertoo akustiikan professori Ville Pulkki.

Akustiikan tutkimuksessa käytettäviä korvan malleja
Kuuloaisti vastaa kahteen kysymykseen: mitä ja missä? Kuvassa akustiikan tutkimuksessa käytettäviä KEMAR-mallikorvia. Kuva: Sara Urbanski / Aalto-yliopisto

Pulkin mukaan menetelmä ei vielä sovi useimpiin kuulolaitteisiin, koska se vaatii paljon laskentatehoa ja energiaa. Vasemman ja oikean korvan kuulolaitteen tulisi myös keskustella keskenään. Pienissä kuulolaitteissa tämä voi olla vaikeaa toteuttaa, ja käyttömukavuuden takia pariston tulisi kestää pitkään.

Suurempiin laitteisiin laskentateho ja riittävän tehokas virtalähde on helpompi mahduttaa. Tällaisia voisivat olla esimerkiksi kuulemista haittaavia kypäröitä käyttäville ammattiryhmille, kuten pelastajille, poliiseille ja sotilaille, tarkoitetut kuulokkeet.

”Kun vaikka pelastaja menee savun täyttämään rakennukseen, jossa ei näy mitään, hänen on tärkeää paitsi kuulla avunhuudot myös se, mistä ne tulevat, tai tietää, kummalla puolella kollega liikkuu”, Pulkki sanoo.

Äänen suunnan kuuleminen on turvallisuuskysymys myös kuulovammaiselle, Fernandez korostaa.

”Esimerkiksi tietä ylittäessä on tärkeää erottaa, mistä suunnasta auto on tulossa.”

Autenttinen tilaääni tekisi myös AR (lisätty todellisuus) -kokemuksista realistisempia ja nautinnollisempia. Ryhmän kehittämällä mallilla ympäristön äänet saataisiin kuulumaan AR-lasien kuulokkeissa aivan kuin käyttäjällä ei olisi laitteita päässä ollenkaan.

Aallon akustiikan laboratoriossa on tutkittu paljon esimerkiksi konserttisalien akustiikkaa. Jos sinfoniaorkesterin konsertti nauhoitettaisiin riittävän monella, eri puolille konserttisalia sijoitetulla mikrofonilla, se voitaisiin uudella mallilla toistaa niin tarkasti, ettei musiikkifanin tarvitsisi matkata Berliiniin, Lontooseen tai Chicagoon huippuorkestereja kuullakseen.

”VR-konsertissa saisi nauttia samasta elämyksestä kuin konserttisalissa”, Fernandez sanoo.

Tutkijatohtori Archontis Politis Tampereen yliopistosta otti osaa matemaattisen mallien kehittämiseen.

Linkki julkaisuun (asa.scitation.org)

Akustiikan laboratorio

Akustiikan laboratorio on Aalto-yliopiston monitieteinen tutkimuskeskus, joka keskittyy äänenkäsittelyyn ja tilaääneen.

Lue lisää
Aalto University Acoustic Lab

Ihminenkin voi saada superkuulon – uudella audiotekniikalla voi seurata jopa lepakoiden lentoa

Ultraääni tallennetaan pienen pallon pinnalla olevilla mikrofoneilla ja toistetaan signaalinkäsittelyn jälkeen kuulokkeilla. Teknologiasta voi olla hyötyä esimerkiksi putkivuotojen paikantamisessa.

Lue lisää
Superkuulon toteuttava laite. Pallon pinnalla on kuusi ultraäänille herkkää mikrofonia. Ultraäänet toistetaan kuulokkeisiin niin, että kuulija havaitsee äänilähteen suunnan oikein. Kuva: Ville Pulkki / Aalto-yliopisto
  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Feedback controlled hydrogels. Picture: Ikkala lab / Aalto University and Priimägi lab / Tampere University
Mediatiedotteet Julkaistu:

Tutkijat loivat itsesäätyvän materiaalin mimosan ja kärpäsloukkukasvin innoittamina

Aalto-yliopiston ja Tampereen yliopiston tutkijat ovat onnistuneet kehittämään homeostaattisen järjestelmän, joka reagoi ympäristön muutoksiin dynaamisesti samaan tapaan kuin elävät organismit. Saavutus voi mahdollistaa uudenlaisia älykkäitä materiaaleja ja interaktiivista pehmeää robotiikkaa.
Aalto-yliopiston opiskelijat Joensuun torilla
Mediatiedotteet Julkaistu:

Aalto Road Show valloitti Itä-Suomen!

Aalto-yliopisto jalkautui viikon kestävälle lukiokiertueelle, Aalto Road Showlle, Itä-Suomeen viikolla 44.
Opiskelijat tutkimassa aurinkopaneelia.
Mediatiedotteet, Opinnot Julkaistu:
Andrea Sand
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Piille löytyy elektroniikassa lupaavia haastajia, mutta niiden säteilynkestävyys on arvoitus – tutkimusprojekti kehittää tehokasta tapaa säteilyvaurioiden ennustamiseen

Aalto-yliopiston apulaisprofessori Andrea Sand sai Euroopan tutkimusneuvostolta merkittävän rahoituksen puolijohteiden säteilyvaurioiden ennustamiseen. Uusi menetelmä voi avata ovia seuraavan sukupolven materiaalien käyttöönotolle.