Simo Särkkä
Associate Professor
Associate Professor
T410 Dept. Electrical Engineering and Automation
Dr. Särkkä is an Associate Professor in Sensor informatics and medical technology at the Department of Electrical Engineering and Automation (EEA) at Aalto University. His research interests are in multi-sensor data processing systems with applications in location sensing, health and medical technology, machine learning, inverse problems, and brain imaging.
Full researcher profile
https://research.aalto.fi/...
Palkinnot
Winner of the 1st Prize for Reproducibility in Signal Processing by soundsoftware.ac.uk, awarded at Machine Learning for Signal Processing (MLSP) Conference 2014
Winner of the 1st Prize for Reproducibility in Signal Processing by soundsoftware.ac.uk, awarded at Machine Learning for Signal Processing (MLSP) Conference 2014.
Palkinto tai huomionosoitus urasta
Sähkötekniikan ja automaation laitos
Jan 2014
Winner of the IJCNN Time Series Prediction Competition - The CATS Benchmark (together with Vehtari & Lampinen)
Winner of the IJCNN Time Series Prediction Competition - The CATS Benchmark (together with Vehtari & Lampinen), 2004 (24 international contestants).
Palkinto tai huomionosoitus tuotoksesta
Sähkötekniikan ja automaation laitos
Jan 2004
Best paper finalist and runner-up award, Computer Track
The first IEEE Life Sciences Conference (LSC), best paper finalist and runner up award for the Computer track for the paper "Prediction of major complications affecting very low birth weight infants" by Olli-Pekka Rinta-Koski, Simo Särkkä, Jaakko Hollmén, Markus Leskinen, Krista Rantakari and Sture Andersson
Palkinto tai huomionosoitus tuotoksesta
Professorship Rousu Juho
Dec 2017
The best student paper award winner
The best student paper award winner for paper "Jakub Prüher and Simo Särkkä (2016). On The Use Of Gradient Information In Gaussian Process Quadratures. In Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (MLSP)."
Palkinto tai huomionosoitus tuotoksesta
Sähkötekniikan ja automaation laitos
Jan 2016
Tammy L. Blair Best Student Paper Award, First Runner-Up
Palkinto tai huomionosoitus tuotoksesta
Koulun yhteiset
Jul 2016
Tammy L. Blair Best Student Paper Award, First Runner-Up
Palkinto tai huomionosoitus tuotoksesta
Sähkötekniikan ja automaation laitos
Jul 2017
Tutkimusryhmät
- Helsinki Institute for Information Technology (HIIT)
- Sensor Informatics and Medical Technology
Julkaisut
Online pole segmentation on range images for long-term LiDAR localization in urban environments
Hao Dong, Xieyuanli Chen, Simo Särkkä, Cyrill Stachniss
2023
Robotics and Autonomous Systems
Multidimensional projection filters via automatic differentiation and sparse-grid integration
Muhammad Fuady Emzir, Zheng Zhao, Simo Särkkä
2023
Signal Processing
Vessel Bearing Estimation Using Visible and Thermal Imaging
Ajinkya Gorad, Syeda Sakira Hassan, Simo Särkkä
2023
Image Analysis - 23rd Scandinavian Conference, SCIA 2023, Proceedings
Fast Dynamic Programming in Trees in the MPC Model
Chetan Gupta, Rustam Latypov, Yannic Maus, Shreyas Pai, Simo Särkkä, Jan Studený, Jukka Suomela, Jara Uitto, Hossein Vahidi
2023
SPAA 2023 - Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures
Fourier-Hermite Dynamic Programming for Optimal Control
Syeda Sakira Hassan, Simo Sarkka
2023
IEEE Transactions on Automatic Control
System identification using autoregressive Bayesian neural networks with nonparametric noise models
Christos Merkatas, Simo Särkkä
2023
Journal of Time Series Analysis
On the convergence of numerical integration as a finite matrix approximation to multiplication operator
Juha Sarmavuori, Simo Särkkä
2023
CALCOLO
Bayesian Filtering and Smoothing
Simo Särkkä, Lennart Svensson
2023
Temporal Parallelization of Dynamic Programming and Linear Quadratic Control
Simo Särkkä, Angel F. Garcia-Fernandez
2023
IEEE Transactions on Automatic Control
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William Wilkinson, Simo Särkkä, Arno Solin
2023
Journal of Machine Learning Research