Uutiset

Merkittävä tutkimustulos: grafeeni voi muuttua suprajohteeksi luultua korkeammassa lämpötilassa

Sähkövastuksen katoaminen vähentäisi tietokoneiden energiankulutusta.
Kuva: Taiteilijan näkemys kaksikerrosgrafeenista. Antti Paraoanu.
Kuva: Taiteilijan näkemys kaksikerrosgrafeenista. Antti Paraoanu.

Suprajohteet ovat aineita, joiden sähkövastus katoaa kokonaan tietyn kriittisen lämpötilan alapuolella. Nykyään tunnetuilla suprajohteilla tuo kriittinen lämpötila on yleensä 200 pakkasasteen kylmemmällä puolella. Siksi suprajohteiden sovellukset vaativat kalliita jäähdytysjärjestelmiä, mikä on rajoittanut niiden käyttöä esimerkiksi kvanttitietokoneissa ja matkapuhelinverkkojen tukiasemilla.

Huoneenlämpötilassa toimiva suprajohde onkin yksi tieteen suurista tavoitteista, sillä se mahdollistaisi esimerkiksi tietokoneiden toiminnan paljon nykyistä pienemmällä energiankulutuksella.

Vuonna 2018 MIT:n professori Pablo Jarillo-Herrero havaitsi tutkimusryhmänsä kanssa, että maailman kestävin aine grafeeni voi muuttua suprajohteeksi, kun kaksi grafeenikerrosta ovat päällekkäin ja sopivasti toisiinsa nähden kierrettynä. Nyt Aalto-yliopiston professori Päivi Törmän ja Jyväskylän yliopiston professori Tero Heikkilän tutkimusryhmät ovat osoittaneet teoreettisesti simuloimalla, että grafeeni voi muuttua suprajohteeksi paljon luultua korkeammassa lämpötilassa. Tämä johtuu grafeenin elektronien kvanttiominaisuuksista.

Tutkimustulokset julkaistiin Physical Review B –lehdessä.

Physics World -lehti valitsi kaksikerrosgrafeenin suprajohtavuuden vuoden 2018 fysiikan alan läpimurroksi, ja fyysikot ympäri maailmaa ovat etsineet sille selitystä. Vaikka grafeeni muuttui suprajohtavaksi vain muutaman asteen päässä absoluuttisesta nollapisteestä, -273,15 celsiusasteesta, suprajohtavuuden mekanismin selittäminen voi auttaa kehittämään materiaaleja, jotka ovat suprajohtavia korkeassa lämpötilassa.

Tuore tutkimus tarkensi tietoa suprajohtavuuden mekanismeista.

”Löysimme jo aiemmin uudenlaisten kvantti-ilmiöiden vaikutuksen suprajohtavuuteen, ja olemme sen jälkeen tutkineet sitä yksinkertaistetussa mallissa. Nyt oli hienoa nähdä simuloimalla, kuinka samat ilmiöt saadaan esiin oikeassa materiaalissa”, kertoo tutkija Aleksi Julku Aalto-yliopistosta.

”On tärkeää, että jatkossa voidaan testata laskemiamme teoreettisia ennusteita myös kokeellisesti. Tämä kertoo, onko grafeenin suprajohtavuudelle löytämämme selitys oikea”, jatkaa tutkija Teemu Peltonen Jyväskylän yliopistosta.

Lisätietoa:

Artikkeli: A. Julku, T. Peltonen, L. Liang, T.T. Heikkilä, ja P. Törmä, Phys. Rev. B 101, 060505 (2020)

Physics viewpoint-artikkeli tutkimuksesta

Aleksi Julku
Tutkija
Aalto-yliopisto
a[email protected]

Teemu Peltonen
Tutkija
Jyväskylän yliopisto
t[email protected]

Tero Heikkilä
Professori
Jyväskylän yliopisto
[email protected]
puh. 040 805 4804

Päivi Törmä
Professori
Aalto-yliopisto
p[email protected]
puh. 050 382 6770

  • Julkaistu:
  • Päivitetty:
Jaa
URL kopioitu

Lue lisää uutisia

Lauri Parkkonen and the family cat, Roosa. Photo: Lauri Parkkonen, Aalto, University.
Mediatiedotteet Julkaistu:

Mitä koirien ja kissojen aivoissa tapahtuu? Uusi kuvantamismenetelmä selvittää lemmikkien mielen saloja

Aalto-yliopiston professori Lauri Parkkosen ryhmä on vuosia kehittänyt kvanttioptisia antureita aivomagneettikäyrän eli magnetoenkefalografian (MEG) mittaamiseen. Toisin kuin perinteisessä MEG-laitteessa, jossa hyvin kylmässä toimivat suprajohtavat anturit vaativat ympärilleen senttimetrejä paksun lämpöeristeen, nämä uudet huoneenlämpötilassa toimivat anturit voidaan tuoda suoraan pään pinnalle. Tämä mahdollistaa entistä tarkemmat aivomagneettikäyrien mittaukset. MEG-kuvantaminen on tutkittavalle kivutonta ja turvallista.
Kuvaa laitteittosta Aalto-yliopsiton Kylmälaboratoriossa.
Mediatiedotteet Julkaistu:

Ikuinen liike on mahdollista – Aalto-yliopiston Kylmälaboratoriossa havainnoitiin kahden fysiikan lait haastavan aikakiteen välistä vuorovaikutusta

Aikakiteet ovat aineen olomuoto, jossa hiukkaset liikkuvat ikuisesti toistuvassa rytmissä ilman ulkopuolista energiaa. Tutkijat onnistuivat luomaan Aalto-yliopiston Kylmälaboratoriossa kaksi aikakidettä ja tarkkailemaan niiden välistä vuorovaikutusta. Tulevaisuudessa aikakiteitä voi hyödyntää erilaisissa laitteissa, kuten kvanttitietokoneiden muistina.
Valkoinen laboratoriotakki sekä analyysityökalu, jolla voidaan mitata veripisarasta särkylääkkeen pitoisuus.
Mediatiedotteet Julkaistu:

Kannettava ja nopea analysointityökalu voi mullistaa kipulääkkeiden diagnostiikkamarkkinat

Aalto-yliopistosta ponnistanut startup-yritys Fepod Oy Ltd on kehittänyt diagnoosimenetelmän, jolla potilaan veren kipulääkepitoisuus voidaan selvittää nopeasti ja edullisesti suoraan hoitopaikalla.
Yhdistelmäkuva, jossa näkyy revontulia, Maa, mittauksia.
Mediatiedotteet Julkaistu:

Suomi 100 -satelliitti teki sen, mihin aiemmin pystyivät vain paljon suuremmat: kuvasi ja tutki revontulia

Revontulialueen tutkiminen auttaa esimerkiksi turvallisten tietoliikenneyhteyksien kehittämisessä.