Institutionen för kemi och materialvetenskap

Multifunktionell materialdesign

Vårt yttersta mål är att kombinera flera funktioner i samma material genom supramolekylär kemi och utforma hierarkiska strukturer.
Hydrogen-bonding molecules

Våra forskningsområden:

  1. Tunn film nanopattering genom självmontering;
  2. Biomaterial från polymermallar för omvandling av solenergi;
  3. Hierarkiskt strukturerade multifunktionella material och ytor;
  4. Fotoaktiverande material
  5. Klimatanpassade textilier

 

Läs mer om forskningen(på engelska)

Vesipisarakuviot ja itsejärjestäytyneet hierarkiset rakenteet

Ryhmämme kehittää uusia menetelmiä nanorakenteiden kerrostamiseen, mekaanisten ominaisuuksien mittaamiseen ja biotunnistamiseen, joita voidaan käyttää puettavissa laitteissa. Tämä tavoite voidaan saavuttaa yhdistämällä erilaiset itsejärjestäytymismekanismit yhteen synteesimenetelmään, esimerkiksi yhdistämällä vesipisarakuvionti, lohkokopolymeerien ja nanopartikkelien itsejärjestymiseen. Upotuspinnoituksen käyttö, joka on kustannustehokas, yksinkertainen ja skaalautuva tekniikka kalvopäällystykseen, voi paljastaa nanorakenteisen kuvion ilman jälkikäsittelyä.

Breath figures & hierarchical self-assembled structures

We develop novel methods for nano- and microstructure deposition and to investigate their use in bio/mechano-sensing with a potential application in wearable devices. This object can be achieved via incorporating different self-assembly processes in one synthesis procedure, for example combining breath figure techniques, block copolymer phase separation and nanoparticles self-organization. In addition, the use of dip-coating, which is a cost-effective, simple and scalable technique for film deposition, can reveal a nanostructured pattern without post-processing.

Functional bioaerogels & biocryogels

Functional bioaerogels & biocryogels

Our group aims to understand, how bio-based materials – even biowaste – can be converted into functional highly porous materials, called aerogels and cryogels. With current work, biodegradable materials are used to prepare the aerogels, which could achieve the promising material properties, such as high specific surface area, low density and high porosity. According to the different requirements of final applications, the material properties can be easily tuned by versatile supramolecular crosslinking strategies.

Functional bioaerogels & biocryogels

Funktionaaliset huokoiset biomateriaalit

Tämän tutkimuksen keskeinen teema on, miten erittäin biomateriaalit – jopa biojäte – voidaan muuntaa erittäin huokoisiksi materiaaleiksi, aero- ja kryogeeleiksi Tämän hetkisessä tutkimuksessa aerogeelien valmistukseen käytetään biohajoavia materiaaleja, jotka voivat saavuttaa lupaavia ominaisuuksia, kuten korkea ominaispinta-ala, matalan tiheys ja suuri huokoisuus. Lopullisten sovellusten erilaisten vaatimusten mukaan materiaalin ominaisuuksia voidaan helposti muokata supramolekyläärisillä ristisilloitusstrategioilla.

Current work, we combine photo-responsive azobenzene with matrix polymer by supramolecular interaction and then coat the complexes on thick stretchable substrate to build a double-layered structure. Upon stretching, the wrinkle structure will be created due to the mechanical properties mismatch between the top layer and substrate. Under the light illustration, wrinkle structure will be erased and the rate of erasure is tunable by adjusting the azobenzene content. Furthermore, with wrinkle structure, the surface area will be significantly increased, which could be used for further deposition and potential applications.

Nanocellulose in energy devices

Nanocellulose in energy devices

Is it possible to produce/store energy from trees or other bio-based materials only? Our main focus is to fabricate “green & sustainable” materials that are based on cellulose, the most abundant organic compound on earth, to reduce the environmental pollution and CO2 emissions in the world. Cellulose can be employed in flexible/stretchable energy storage devices, including batteries and supercapacitors, as an active material or/and electrolyte, due to its low cost, high biocompatibility, and biodegradability. It can also be used as transparent and flexible films in solar energy applications (e.g. solar cells) and replace glass, for easier recyclability and greener planet.

Nanocellulose in energy devices

Nanoselluloosa energian tuotanto- ja varastointilaitteissa

Onko mahdollista tuottaa tai varastoida energiaa pelkistä puista tai muista biopohjaisista materiaaleista? Päätavoitteemme on valmistaa ekologisia ja kestäviä materiaaleja, jotka perustuvat selluloosaan, joka on yleisin luonnossa esiintyvä orgaaninen yhdiste, sekä vähentää ympäristöhaittoja ja hiilidioksidipäästöjä. Selluloosaa voidaan käyttää joustavissa ja venyvissä energianvarastointilaitteissa, mukaan lukien paristot ja superkondensaattorit, aktiivisena materiaalina ja /tai elektrolyyttinä. Se on halpa, yleisesti biologisesti yhteensopiva ja biologisesti hajoava. Sitä voidaan käyttää myös läpinäkyvinä ja joustavina kalvoina aurinkoenergiasovelluksissa (esim. aurinkokennot) korvaamaan lasi, helpottamaan kierrätettävyyttä ja ylläpitämään vihreämpää planeettaa.

Replication of the nature’s functional surfaces

Replication of the nature’s functional surfaces

Fascinating properties in nature have always inspired scientists to mimic and employ their functionalities. Among them, some plant leaves, such as those of many cabbage plants, benefit from the possibility of removing dirt as the rain falls and the droplets sweep the surface clean. Such surfaces are known to be self-cleaning. The self-cleaning property is quite desirable in various industries. For example, they can be quite useful in solar cells where their efficiency degrades as dirt piles-up. Here, we pursue replication of such functionalities by imprinting the surface structures of promising leaves.

Replication of the nature’s functional surfaces

Luonnon funktionaalisten pintojen monistaminen

Luonnon kiehtovat ominaisuudet ovat aina innoittaneet tutkijoita jäljittelemään ja käyttämään niiden toimintoja. Jotkin kasvien lehdet, kuten parsakaalin lehdet, hyötyvät mahdollisuudesta poistaa pinnastaan likaa sateella. Pisarat pyyhkäisevät pinnan puhtaaksi. Tällaisten pinnat ovat siis itsepuhdistuvia. Itsepuhdistuvuus on varsin toivottava eri toimialoilla. Se voi olla hyödyllinen esim. aurinkokennoissa, koska niiden tehokkuus heikkenee likaantuessa. Tutkimuksessa pyrimme toistamaan lehtien ominaisuuksia jäljentämällä lupaavien niiden pintarakenteita.

Plantvirusparticles as nanomaterials

Kasvivirukset nanomateriaalina energiasovelluksiin

Kasvivirukset ovat monimuotoisia ja erittäin mielenkiintoisia nanomateriaaleja, joiden ominaisuuksia on helppo muokata. Perunavirus A (PVA) on kasvivirus, joka tuottaa pitkiä taipuisia nanolangan kaltaisia nanopartikkeleita, jotka ovat erittäin kapeita suhteessa pituuteensa. Niiden tuotannon helppous, monodispersiivinen luonne ja muokattavuus tekevät niistä erittäin sopivan ehdokkaan nanomateriaalisovelluksiin. Tutkimuksessamme yritämme implementoida PVA-nanopartikkeleita aurinkosähkösovelluksiin.

Plantvirusparticles as nanomaterials

Plantvirusparticles as nanomaterials

Plantviruses are emerging nanomaterials with highly-customizable and complex features. Potato virus A (PVA) is a plant virus, which produces long flexuous nanowire-like particles with very high aspect ratio. Their ease of production, monodisperse nature and customizability makes them highly suitable candidate for nanomaterial applications. In our group, we explore novel strategies to implement PVA-nanoparticles in emerging photovoltaics.

Polymer actuators

Polymer actuators

Certain polymer materials, such as nylon, inherently possess thermally activated structures. In our research we make yarns from twisting and coiling this type of a material to produce thermally-triggered actuators. These actuators either contract or expand based on the provided thermal energy, and they could be used in applications such as smart fabrics, wearable technology, and soft robotics. Our aim is to understand the polymer structure and the formation of the yarn itself to improve the functioning of our mobile material, and in addition scope out future design possibilities for such a material.

Polymer actuators

Ulkoisiin ärsykkeisiin reagoivat langat ja tekstiilit

Tietyt polymeerimateriaalit (kuten esimerkiksi nylon) omaavat rakenteen, joka muuttuu lämmön vaikutuksesta. Näistä materiaaleista valmistettuja lankoja kiertämällä ja pyörittämällä vieterin muotoon on mahdollista valmistaa lankoja, jotka venyvät tai kutistuvat lämpöenergian vaikutuksesta. Tutkimuksessamme yritämme selvittää mitkä erot polymeerin ominaisuuksissa ja langan rakenteessa vaikuttavat sen kykyyn venyä ja kutistua. Tästä materiaalista on mahdollista lähteä kehittämään erilaisia sovelluksia älykankaiden ja pehmeän robotiikan saralla, ja yksi tutkimuksen tavoitteista onkin kartoittaa mahdollisia käyttökohteita.

Jaana Vapaavuori

 

Yhteystiedot:

Mailing address: Kemian ja materiaalitieteen laitos, Aalto yliopisto, Kemistintie 1, 02150 Espoo / PL 16100, 00076 AALTO

Käyntiosoite: Huone B209b, Kemistintie 1 (Kemian rakennus)

Sähköpostiosoitteet: [email protected]

Jos olet kiinnostunut tutkimuksestamme, voit olla yhteydessä prof. Jaana Vapaavuoreen sähköpostitse.

  • Publicerat:
  • Uppdaterad:
Dela
URL kopierat