Extracting periodic patterns in steel

Sampo Haikonen 13.04.2023

AI-ROT

- Research project funded by Academy of Finland
- Aims to improve product lines with focus on rotating components
- Investigates new methods for machine direction analysis
- Industrial partner SSAB

Steel strip production process

Online measurement of steel strips

Some quality parameters:

- Centerline thickness
- Cross profile measurement
- Crown and wedge
- Edge-drop
- Strip width
- Strip contour
- Strip temperature cross profile

Machine direction analysis

- Rotating machine elements cause imperfections in the end product corresponding to their rotating
 speeds:
 - Roundness errors of rolls
 - Unbalance
 - Vibrations
- Obtain machine direction data with online system or laboratory analyzer
- Rotating speeds of components are known, repeating patterns can be separated

Modeling the thickness variation from single roll with sinusoids

Stationary:
$$x(n) = \sum_{l=1}^{L} A_l e^{jl\omega n}$$

Varying amplitude:
$$x(n) = \sum_{l=1}^{L} A_l(n) e^{jl\omega n}$$

Varying frequency:
$$x(n) = \sum_{l=1}^{L} A_l e^{jl\varphi(n)}, \quad \varphi(n) = \varphi(0) + \int_0^n \omega(\tau) d\tau$$

Proposed procedure for extracting the patterns

- 1. Estimate the frequency curve for each roll assuming constant amplitude-varying frequency model
- 2. Estimate the varying amplitudes during the rolling process using result from step 1
- 3. Resample and synchronize the patterns to angular domain

Frequency profile estimation with nonlinear least squares (NLS)

- The line speed in the end is known
- Assumption that all rolls are rotating at speed proportional to the line speed
- Maximizing the NLS cost-function yields the relationship term

$$\mathbf{Z}_{L}(k) = \begin{bmatrix} e^{ik\varphi(0)} & e^{ik2\varphi(0)} & \cdots & e^{ikL\varphi(0)} \\ e^{ik\varphi(1)} & e^{ik2\varphi(1)} & \cdots & e^{ikL\varphi(1)} \\ \vdots & \vdots & \ddots & \vdots \\ e^{ik\varphi(N-1)} & e^{ik2\varphi(N-1)} & \cdots & e^{ikL\varphi(N-1)} \end{bmatrix}$$
$$\varphi(t) = \varphi(0) + \int_{0}^{t} \omega(\tau)d\tau$$
$$J_{L}(k) = \mathbf{x}^{T} \mathbf{Z}_{L}(k) [\mathbf{Z}_{L}^{T}(k)\mathbf{Z}_{L}(k)]^{-1} \mathbf{Z}_{L}(k)^{T} \mathbf{x}$$
$$\hat{k} = \arg\max_{k} J_{L}(k)$$

NLS spectrum for one strip

Each red line represents either work or backup roll in the finishing mill

Amplitude estimation with LMS adaptive algorithm

Amplitude estimation for simulated signal

Aalto University School of Engineering

Conclusion and future research

- NLS can be used to refine the estimated frequency profile
- Estimating the amplitudes and phases of the rolls using the LMS algorithm
- Extracting average patterns for the rolls using real data
- Quantifying the contributions of each roll to propose scheme for intelligent service scheduling based on development of individual roll patterns

Thank You

