

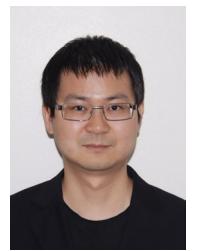
# Bioinformatics and Digital Health

# Bioinformatics and Digital Health at CS/Aalto



Assoc. Prof. H. Lähdesmäki  
- Computational biology  
- Deep generative modeling  
- Probabilistic ML




Prof. J. Rousu  
- Predicting structured data  
- Kernel methods  
- Computational biology



Assoc. Prof. P. Marttinen  
- Bioinformatics  
- Statistics  
- Probabilistic ML



Assist. Prof. V. Gary  
- Bioinformatics  
- Statistics  
- Probabilistic ML



Acad. Fellow L. Cheng  
- Bioinformatics  
- Statistics  
- Biomedicine



Prof. S. Kaski  
- Probabilistic ML  
- Computational medicine  
- User interaction



FiDiProf. H. Mamitsuka  
- Bioinformatics



Prof. P. Orponen  
- Natural computation  
- DNA self-assembly  
- Stochastic and online  
algorithms



Prof. A. Vehtari  
- Bayesian inference  
- Probabilistic modeling  
- Machine learning

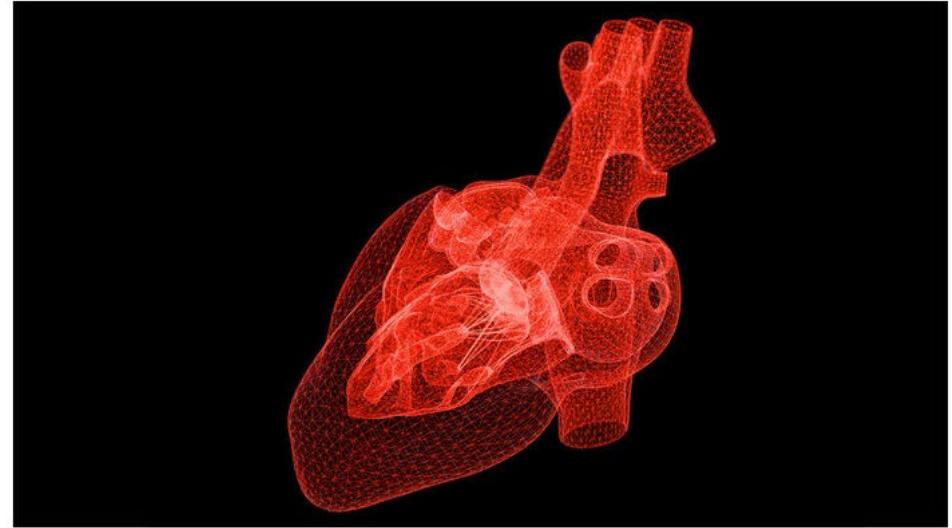


Prof. of practice J. Kaipio  
- Usability of healthcare  
IT systems  
- Patient experience



Prof. Emeritus K. Kaski  
- Complex systems

# Computational methods have become central in biomedical research


AI protein-folding algorithms solve structures faster than ever

*Deep learning makes its mark on protein-structure prediction.*

Matthew Hutson



(Nature, 2019)



Artificial intelligence may help prevent heart failure.

Devrimb/iStockphoto

Self-taught artificial intelligence beats doctors at predicting heart attacks

By Matthew Hutson | Apr. 14, 2017, 3:30 PM

(Science, 2017)

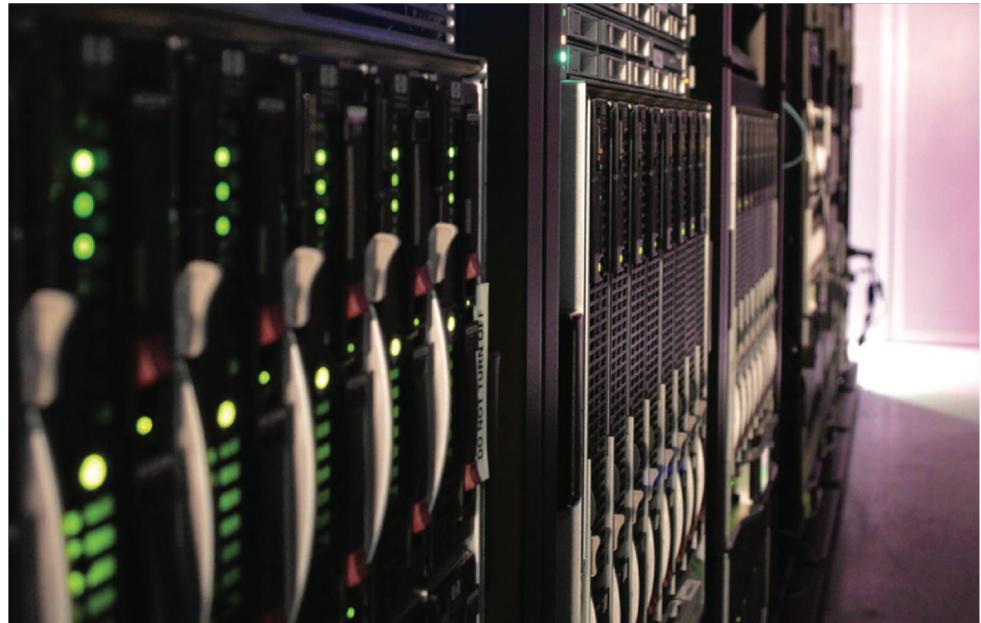
# Computational methods have become central in biomedical research

AI-powered drug discovery captures pharma interest

Eric Smalley

*Nature Biotechnology* 35, 604–605 (2017) | doi:10.1038/nbt0717-604

Published online 12 July 2017


 PDF  Citation  Rights & permissions  Article metrics



TECHNOLOGY FEATURE

## THE BIG CHALLENGES OF BIG DATA

*As they grapple with increasingly large data sets, biologists and computer scientists uncork new bottlenecks.*



# Bioinformatics & DH major

- Main theme:
  - Use ML / Stats / AI to answer various health and bio questions
- Courses in:
  - Bioinformatics and computational biology
  - Machine learning, statistics
  - State-of-the-art ML / AI methods applied to biological problems
- For those who:
  - Have a quantitative mind-set
  - Interested in ML / Stats / CS / AI / Math / ...
  - Interested in solving biological / medical problems

## Compulsory courses of the programme (10 credits):

|            |                                            |   |         |
|------------|--------------------------------------------|---|---------|
| JO-N-E5100 | Life Science Technologies Project Course A | 2 | I/1     |
| JO-N-E3200 | Life Science Technologies Project Course B | 8 | III-V/1 |

## Compulsory courses of the major ( minimum of 30 credits):

### A. Courses on bioinformatics and digital health (choose minimum of 15 credits):

|            |                                                  |   |         |
|------------|--------------------------------------------------|---|---------|
| CS-E5865   | Computational Genomics                           | 5 | I/1     |
| CS-E5875   | High-throughput Bioinformatics                   | 5 | II/1    |
| CS-E5885   | Modelling Biological Networks                    | 5 | III/1   |
| CS-E5890** | Statistical Genetics and Personalised Medicine** | 5 | IV-V/1* |
| CS-E4880** | Machine Learning in Bioinformatics**             | 5 | IV-V/1* |
| CHEM-E8120 | Cell Biology                                     | 5 | II/1    |

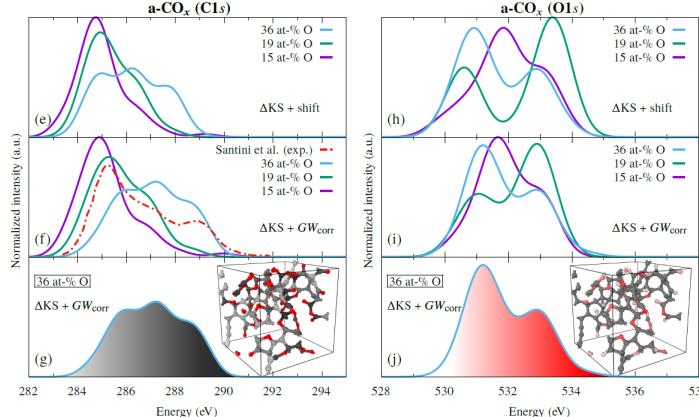
### B: Courses on probabilistic modeling and machine learning (choose minimum of 15 credits):

|          |                                                  |   |             |
|----------|--------------------------------------------------|---|-------------|
| CS-E4710 | Machine Learning: Supervised methods             | 5 | I-II/1      |
| CS-E5710 | Bayesian Data Analysis                           | 5 | I-II/1 or 2 |
| CS-E4890 | Deep Learning                                    | 5 | IV-V/1      |
| CS-E4820 | Machine Learning: Advanced Probabilistic Methods | 5 | III-IV/1    |
| CS-E4840 | Information Visualization                        | 5 | IV-V/1      |
| CS-E4830 | Kernel Methods in Machine Learning               | 5 | IV-V/1      |
| CS-E4895 | Gaussian Processes                               | 5 | IV-V/1      |

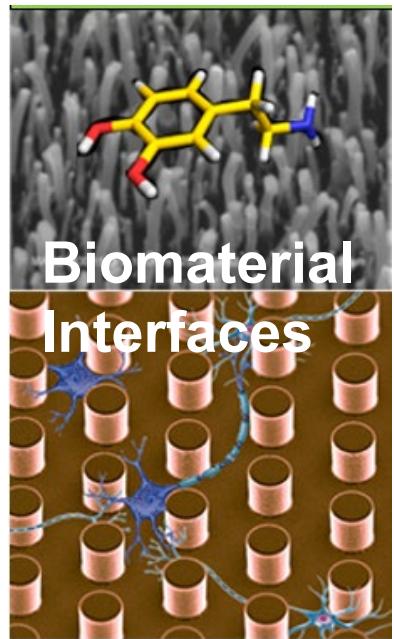
## Optional courses of the major (choose courses to fulfill the 60 credit requirement):

# “Teaching philosophy”

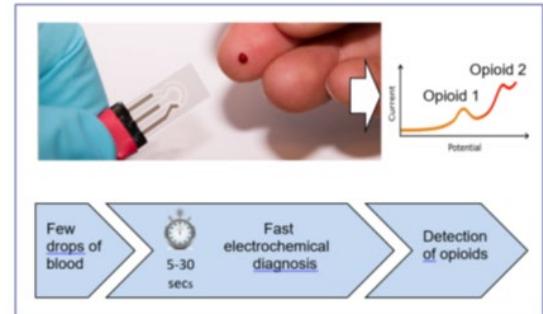
- Give a strong methodological background
  - + **focus on methodological principles and basic science which does not get outdated soon**
  - + specialize in bioinformatics and computational methods
  - + basic knowledge of applications (biology, biotechnology)
  - = M.Sc. degree in biological data analysis — expertise for a variety of jobs
- Provides excellent prospects for doctoral studies and R&D


# Bioinformatics & DH minor

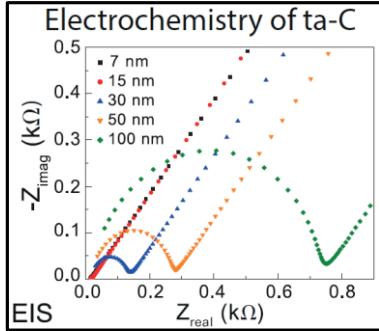
## Structure of the minor


| Code                                                                                                                                                                                                       | Name                                               | Credits |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------|
| <b>Compulsory courses (choose minimum of 20 credits):</b>                                                                                                                                                  |                                                    |         |
| <a href="#">MS-C1620</a>                                                                                                                                                                                   | Statistical Inference                              | 5       |
| <a href="#">CS-E5865</a>                                                                                                                                                                                   | Computational Genomics D                           | 5       |
| <a href="#">CS-E5875</a>                                                                                                                                                                                   | High-throughput Bioinformatics D                   | 5       |
| <a href="#">CS-E5885</a>                                                                                                                                                                                   | Modelling Biological Networks D                    | 5       |
| <a href="#">CS-E5890</a>                                                                                                                                                                                   | Statistical Genetics and Personalised Medicine D*  | 5       |
| <a href="#">CS-E4880</a>                                                                                                                                                                                   | Machine Learning in Bioinformatics D*              | 5       |
| <p>*CS-E5890 and CS-E4880 are lectured every other year (alternating). CS-E5890 is lectured in odd years and CS-E4880 is lectured in even years.</p> <b>Elective courses (select 5 credits if needed):</b> |                                                    |         |
| <a href="#">CS-E4710</a>                                                                                                                                                                                   | Machine Learning: Supervised methods D             | 5       |
| <a href="#">CS-E4830</a>                                                                                                                                                                                   | Kernel Methods in Machine Learning D               | 5       |
| <a href="#">CS-E4820</a>                                                                                                                                                                                   | Machine Learning: Advanced Probabilistic Methods D | 5       |
| <a href="#">CS-E4890</a>                                                                                                                                                                                   | Deep Learning                                      | 5       |

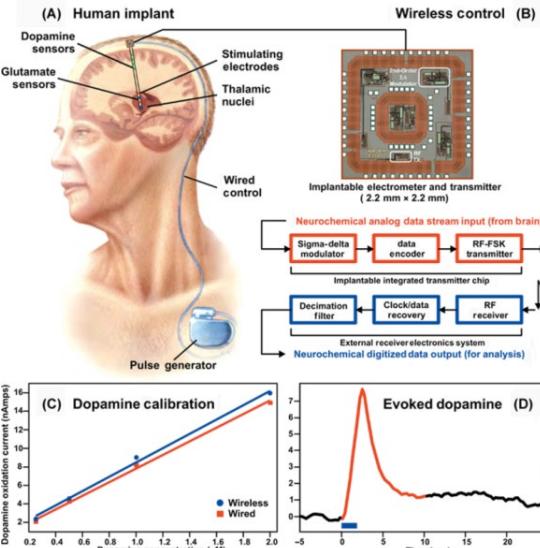
# Biosensing and Bioelectronics


# Biosensing and –electronics




## Computational studies

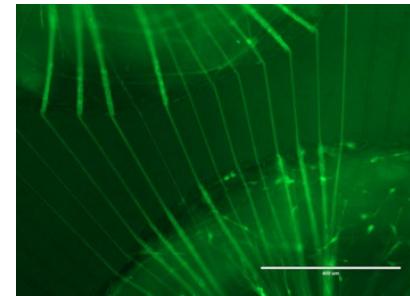
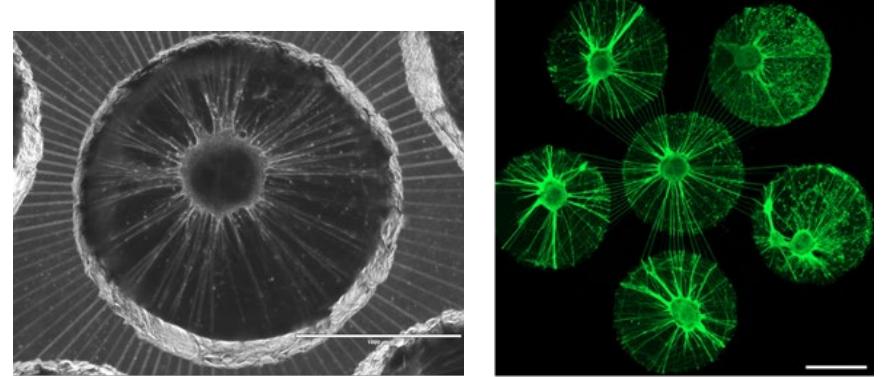
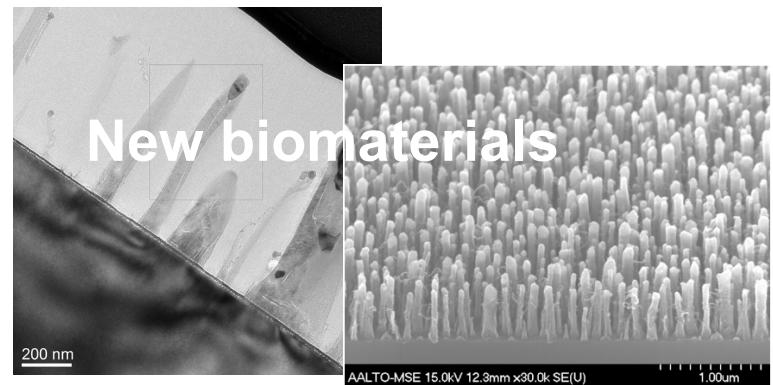



## POC devices




# Electrochemistry






# Bioelectronics



# Biorobotics



## Micro- and nanotechnology



| Mandatory common courses of the programme (10 credits): |                                                                      |   |            |
|---------------------------------------------------------|----------------------------------------------------------------------|---|------------|
| JOIN-E3100                                              | Life Science Technologies Project Course A                           | 2 | I/1        |
| JOIN-E3200                                              | Life Science Technologies Project Course B                           | 8 | III-V/1    |
| Mandatory courses of the major (20 credits):            |                                                                      |   |            |
| ELEC-E8729                                              | Biomaterial Interfaces                                               | 5 | I-II/1     |
| ELEC-E8726                                              | Biosensing                                                           | 5 | III-IV/1   |
| ELEC-E3260                                              | Biomolecules                                                         | 5 | III/1      |
| ELEC-E8734                                              | Biomedical Instrumentation                                           | 5 | II/1       |
| Optional courses ( 25 credits):                         |                                                                      |   |            |
| ELEC-E0210                                              | Master's Thesis Process                                              | 2 | I - summer |
| NBE-E4305                                               | Biodesign–innovating medical technologies in multidisciplinary teams | 5 | V          |

| 3. Biomaterials and electrochemistry (Choose 25 cr) |                                                 |   |        |
|-----------------------------------------------------|-------------------------------------------------|---|--------|
| ELEC-E8724                                          | Biomaterials Science                            | 5 | I-II   |
| ELEC-E8725                                          | Methods of Bioadaptive Technology               | 5 | I-II   |
| CHEM-E4106                                          | Electrochemistry P                              | 5 | III/1  |
| CHEM-E4107                                          | Laboratory Work in Electrochemistry             | 5 | IV/1   |
| CHEM-E4235                                          | Transport Processes at Electrodes and Membranes | 5 | I-II/2 |
| NBE-E4150                                           | DNA Nanotechnology course                       | 5 | I-II   |

## Modules:

### 1. Signal processing in biosciences (Choose 25 cr)

|            |                                                   |   |        |
|------------|---------------------------------------------------|---|--------|
| ELEC-C5212 | Introduction to Statistical Signal Modelling      | 5 | IV-V   |
| ELEC-E8739 | AI in health technologies                         | 5 | I-II   |
| ELEC-E9111 | Mathematical Computing                            | 5 | I-II   |
| CS-E4710   | Machine Learning: Supervised methods              | 5 | I-II   |
| ELEC-E7260 | Machine Learning for Mobile and Pervasive Systems | 5 | III-IV |
| ELEC-E8743 | Neurorobotics                                     | 5 | III-IV |

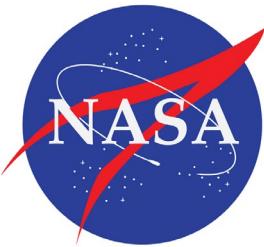
### 2. Micro- and nanofabrication (Choose 25 cr)

|            |                             |   |          |
|------------|-----------------------------|---|----------|
| CHEM-E5115 | Microfabrication            | 5 | IV-V     |
| CHEM-E8135 | Microfluidics and BioMEMS   | 5 | III-IV/1 |
| ELEC-E3230 | Nanotechnology              | 5 | IV       |
| ELEC-E3280 | Micronova Laboratory Course | 5 | I-II     |
| ELEC-E3220 | Semiconductor Devices       | 5 | III/1    |
| NBE-E4150  | DNA Nanotechnology course   | 5 | I-II     |

# Biosensing and –electronics

## Recent MSc theses:

- Cell-free DNA extraction using bead-based microfluidics (2022)
- Screen-printed carbon electrode for electrochemical sensing of lactate from sweat (2022)
- Design and development of a medical device for automated ear inflammation recognition (2021)
- Evaluation of Regression Methods for Predicting Molecule Concentrations from Voltammetric Data (2020)
- Plug & Play Parameters for Patient Monitors (2020)
- Novel microfluidic perfusion chip for ex vivo brain slice imaging (2020)
- Effect of catalyst metal on the electrochemical properties on multi-walled carbon nanotubes (2020)


## Recent PhD theses:

- Carbon nanostructures for neurotransmitter measurements (2017)
- Electrochemical techniques for glutamate measurement (2018)
- Electrochemistry of Amorphous Carbon-Based Materials - Development of an electrochemical sensor for the detection of dopamine (2019)
- Carbon-based hybrid nanomaterials for electrochemical detection of opioids (2021)
- Understanding the chemistry of carbonaceous substances for customized nanomaterials (2022)

# Biosensing and –electronics

## Job prospectives and postgraduate studies/academic career

- ✓ Many established large companies and a SME ecosystem
- ✓ Several recent start up's from the participating groups such as Synoste, Elsi Technologies (MariCare), RFSensIT etc.
- ✓ A lot of research collaboration with Universities across the globe



GE Healthcare



CANATU

Actim

**muRata**  
INNOVATOR IN ELECTRONICS

SUUNTO



Universitat d'Alacant  
Universidad de Alicante



Technical  
University of  
Denmark

BIOHIT HealthCare  
Innovating for Health

PerkinElmer  
For the Better

**ORION**  
PHARMA

**Medix**  
Biochemica

**ZIMMER BIOMET**  
Your progress. Our promise.™

**Labrox**  
Detecting Well

Imperial College  
London

**UCL**

UNIVERSITY OF  
OXFORD

**POLAR**®



UNIVERSITY OF  
COPENHAGEN

**Johnson & Johnson**  
**PLANMECA**



Tomi Laurila



Stephan Sigg



Ilkka Tittonen



Esa Ollila

## Biosensing and – electronics



Katsuyuki Haneda



Markus Turunen



Ivan Vujaklija



Ilkka Laakso



Simo Särkkä

# A!

Aalto University  
School of Chemical  
Engineering

Master's Programme  
Life Science Technologies

**Biosystems and  
Biomaterials Engineering  
Major**

**Prof. Alexander Frey**

Master's Programme in

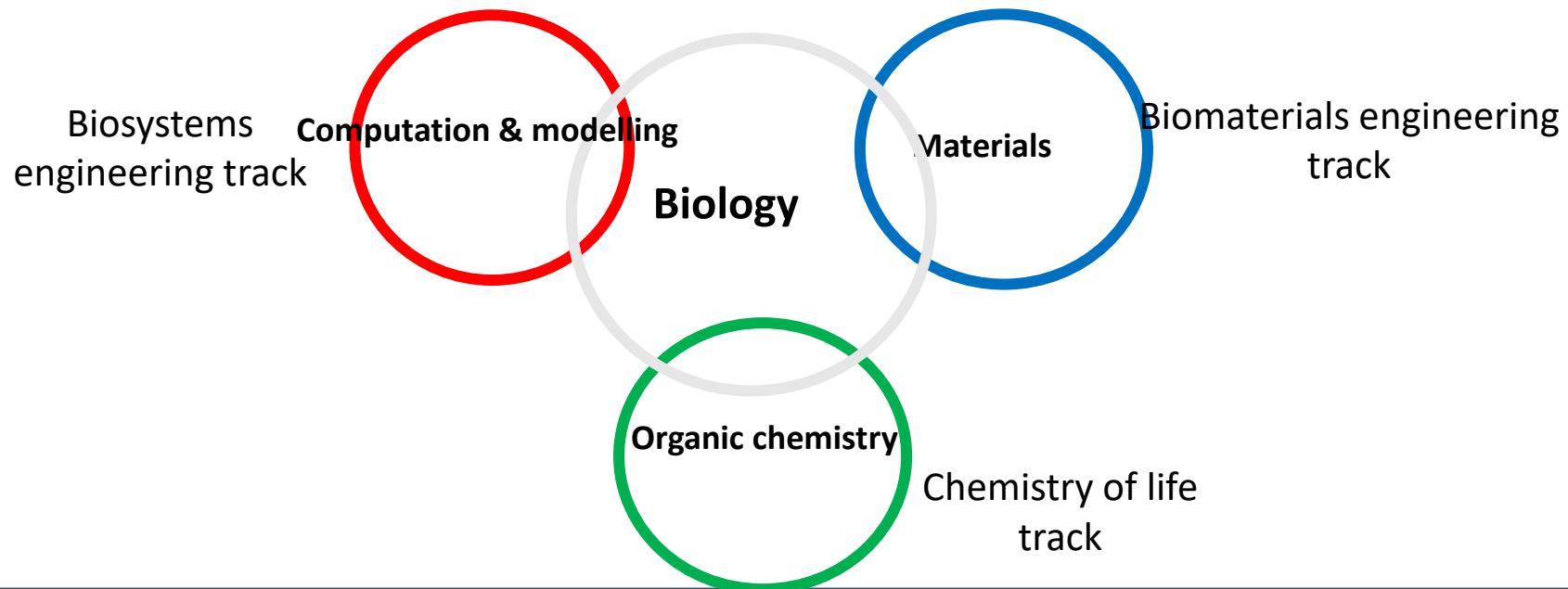
**Life Science  
Technologies**



# Knowledge & skills for addressing our most urgent challenges

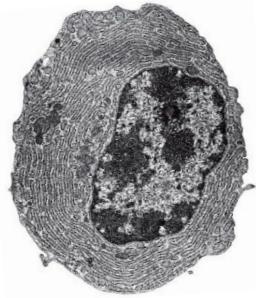
Our current challenges are complex, and no simple solutions exist.



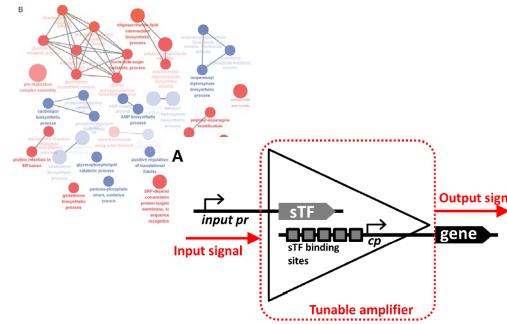

Biosystems and Biomaterials Engineering major provides you with the generic knowledge and skills that allows you addressing some of our most urgent challenges

<https://sustainabledevelopment.un.org/sdgs>

# Biosystems and Biomaterials engineering Major

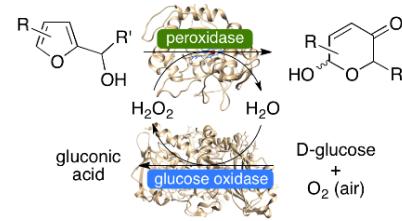

Complex problems require multidisciplinary approaches

- Major comprises common compulsory studies of 30 ECTS and three distinctive tracks.



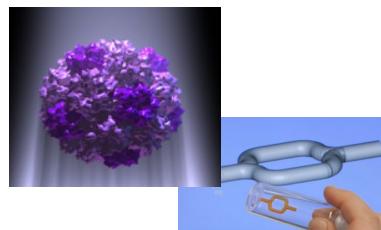

# Biosystems and Biomaterials Engineering major

## Cellular systems understanding at molecular and cellular level




- **Biosystems engineering**
  - biological data analysis
  - synthetic biology




Green  
chemistry

- **Chemistry of life**
  - Small organic molecules
  - Cells and enzymes as catalysts



Energy

- **Biomaterials engineering**
  - synthetic and natural materials for medical applications



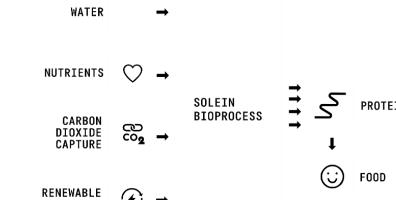
Health

# Future employment opportunities

Our graduates find employments in a broad range of functions & industries (Neste, Orion, Thermo, Terkko Health Hub, Blueprint genetics,...) and in research institutions (VTT, universities)



<https://www.pili.bio/9/technology>


**Animal-free egg white production is based on a safe, cost-efficient and environmentally sound technology called precision fermentation.**

<https://www.onego.bio/>

## FLORA-BASED, COW-FREE

We're doing this by creating milk proteins — casein and whey — that are nutritionally identical to what comes from a cow, but without animals.

<https://www.perfectday.com>



<https://solarfoods.fi/>



<https://boltthreads.com/technology/microsilk/>