Education, Research and Innovations

Predicting the Unpredictable

Yrjö Neuvo 3.11.2020

Aalto-yliopisto Aalto-universitetet Aalto University

Moore's Law (55 years old!)

Every two years:

- Speed and number of transistors double
- Power consumption and cost of transistor halves

"But it is not only Microelectronics that improve exponentially over time"

Mobile Networks' "Moore's Law"

(Is radio bandwidth really a limited resource?)

Smaller cell sizes bring capacity, speed and more frequencies

Mobile data speed has doubled every 19 months!

Anc 6G is a ready ontine crawing board.

Metcalfe's Law

Utility and value = users^2

The first solution to reach critical mass wins

"Finland is full of Telephones" Through Finland in Carts 1896 by Mrs Alec Tweedie

Worldwide monthly mobile data usage in 2018, by country (in GBs per SIM)

Most Popular Social Networks Worldwide

Number of active users in millions as of January 2020

"When wireless is perfectly applied, the whole earth will be converted into a huge brain, all things being particles of a real and rhythmic whole."

Nikola Tesla 1856 – 1943

- Throughout the 1890s, Tesla pursued his ideas for worldwide wireless electric power distribution in his highvoltage, high frequency power experiments in New York and Colorado Springs.
- In 1893, he made pronouncements on the possibility of wireless communication with his devices.
- Tesla tried to put these ideas to practical use in his unfinished intercontinental wireless communication and power transmitter project.

Role of Basic Research

Carbon Nanotube Transistor?

 Self-assembled perfect 1D wire

Metallic / Semiconducting

Flexible and strong

- CMOS devices in VLSI
- Sensor devices
- RF devices in THz
- Flexible TFTs

World Wide Economic Activity Associated With Electronics* *Phaedon Avouris, IBM, 3/2006

- Semiconductors 215 B\$
- Electronics 1 T\$
- IT enabled services 5 T\$

CNT transistor

- -Advantage-
- High speed operation is expected.

$$g_m \sim 10000 \ \mu \text{S}/\mu \text{m}^{-1} \text{ (p-Si } \mathbf{x} \sim 20)$$

- Excellent durability to large current density.

 $10^{9\sim10} \text{ A/cm}^2 \text{ (Si } \mathbf{x} \sim 100)$

- Compatible with high-κ gate oxides. HfO₂¹⁾, SrTiO₃²⁾...

Low cost substrate can be used.
 Polymer³⁾

Nihey et al, JJAP 2004

First Nanotube Integrated Circuit

Inverters

Ring oscillators (3, 11, 21 stages)

NOR and NAND logic gates

RS- and D- flip-flops

Enough to Say Hello

Engineers at MIT and Analog Devices have created the first fully-programmable 16-bit carbon nanotube microprocessor.

It's the most complex integration of carbon nanotube-based CMOS logic so far, with nearly 15,000 transistors.

Theory or Practice? Industry or Academia?

It is not either or, but both and!

Think Broadly!

IMPROVING ENERGY EFFICIENCY

IMPROVING THE EFFICIENCY OF PRESENT TECHNOLOGY

→ A more efficient engine

SWITCHING TECHNOLOGY TO PERFORM THE SAME TASK

→ An electric car

Modifying the task

→ Modern public transportation

Making wide reaching changes to what is done

→ Removing the need to move

- Network, discuss, be curious
- Follow strict academic ethics principles
- Take a liberal view on who to include as authors or inventors

Competence (Curiosity) Profile

Deep competence in a specific area or understanding the bigger picture

Both **breadth and depth** are needed

Grow Your Knowledge Capital!

- Continuous learning is like putting money in the bank.
- Capital after t years with interest rate r
- Time in years to grow the capital from C1 to C2
- Aproximate time to double the capital:

$$C_2 = C_1 \cdot e^{rt}$$

$$t = \frac{100 \times \ln\left(C_2/C_1\right)}{r\%}$$

$$t_{\times 2} \cong \frac{70}{r\%}$$

Career Planning

- Like what you do, career planning less important
- At young age, test your limits, do radical things
- Sacrifice short term economic benefits...
- Go abroad

Thank you!

Background Pictures: Unsplash Slide Design: Otto Olavinen /

Aalto Digi Platfrom

