Newtonian Telescope Design for Stand-off Laser Induced Breakdown Spectroscopy

Mechatronics project presentation

What is LIBS?

- LIBS stands for Laser Induced Breakdown Spectroscopy
- LIBS focuses a laser onto a sample which results in ablation (plasma forming)
- Light is gathered from the plasma and analyzed
- Stand-off LIBS means that the range to the sample varies.
- Most common applications:
 - Detecting explosive materials from a distance (Military)
 - Testing element compositions of samples in Mars Rover (Research)
 - Mapping out elements in mine walls in mining operations (Commercial)

What is LIBS?

Research goals and initial prototype

The goal was to improve the initial prototype:

- To gather enough light for a high quality spectroscopy analyze.
- The device should function properly in the range of 3 10 meters.
- The wavelength gathered for the spectrometer should include the ranges of 200 950 nm.
- The laser beam focused onto the sample should be on the same optical axis as the light gathering optical components, to prevent complexity of the light path.
- Minimizing the area of the components on the breadboard.
- Enlarging the lenses for the laser beam to enable less power from the laser.

Our solution

- Modified Newtonian telescope that uses primary concave mirror and 45 degree secondary mirror to collect the light.
- Laser is steered to the same optical axis in front of the telescope
- The stepper motors that focus the laser and the fibre optic are outside the telescope and the optical axis

Prototyping

- 3D-printing as main manufacturing method
 - + Allows very free design
 - + Relatively fast, cheap and easy
 - Poor tolerances compared to machining
- Laser cutting for specific parts
 - + Good tolerances
 - + Strong and stiff
 - + Very fast
 - Only flat geometry

Optical components

Quantel Q-smart 450 pulsed Nd:YAG laser system

2" gold plated 45 degree mirror for the laser path

Tests

- The expanding and focusing lenses functionalities were tested with a laser pointer.
- The best focus was tested by moving the expanding lens, as well as the target sample.

Results

Main findings:

- Newtonian telescope is the optimal setup for this application
- Setup can be built using 3D printed parts
- the light gathering area of the primary mirror is 5.9x the original prototypes

3D printed components for the modified Newtonian telescope

Usable mirror area in blue

Thank you

Questions?