Indoor pollutions and detection methods

Title of the dissertation
Novel detection methods and knowledge of indoor emissions from building materials, fungi, and cleaning agents

Contents of the dissertation
To guarantee occupants’ health, it is important to better understand exposure to indoor contamination and to improve detection methods. Abnormal moisture level can accelerate the degradation of building materials and promote mould growth. This research shows that it is more difficult to assess emissions from degrading new-generation PVC floor coverings. This hardens the detection of hidden moisture damage in the floor structure and could lead to more severe problems. Mould species characteristic of damp environment were isolated from problematic indoor spaces. These species produced microbial toxins on laboratory media and building materials. Yet, it is unknown how microbial toxins are transported in the indoor environment, but droplets could be a possible carrier of toxins.

Two novel detection methods were evaluated, one for the screening of microbial contaminants and one for the detection of cleaning agents in the indoor air. The new computer-based assay could detect microbial contaminants with specific toxicity mechanisms. Better screening capacity, even limited to specific toxins, could greatly improve the knowledge on the presence of toxins in the indoor environment. The laboratory method proposed for detecting airborne cleaning agents was successful but not yet applicable for direct detection in real-life scenario.

Field of the dissertation
Indoor Environment Technology

Doctoral candidate
Emmanuelle, Castagnoli, M.Sc. (Chemistry)

Time of the defence
10.09.2020 at 12:00

Place of the defence
Aalto University School of Engineering, remotely via zoom link
https://aalto.zoom.us/j/61129632137 Meeting ID: 611 2963 2137

Opponent
Professor Marzenna R. Dudzinska, Lublin University of Technology, Poland

Supervisor
Professor Heidi Salonen, Aalto University School of Engineering, Department of Civil Engineering.

Electronic dissertation
https://aaltodoc.aalto.fi/handle/123456789/49
(permanent link to dissertation, if dissertation is already available in electronic form)

School of Engineering electronic dissertations
https://aaltodoc.aalto.fi/handle/123456789/49

Doctoral candidate’s contact information
Emmanuelle Castagnoli, Department of Civil Engineering, emmanuelle.castagnoli@aalto.fi