

- the cortex

Fig 1: Left: an H-bridge and a capacitor, the power electronics for a TMS channel. Right: switching the transistors on or off controls the flow of current through the coil (top), and thus the induced electric field (bottom). L represents the TMS coil, C the pulse capacitor, and R the coil's winding resistance.

Automated calibration

- Observed waveforms quite distorted compared to calculations due to system non-idealities
- An automated calibration system planned to adjust the pulse timings accordingly

Controlled pulse waveforms for TMS

Heikki Sinisalo, Jaakko O. Nieminen, Risto J. Ilmoniemi Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland

Modes

- The bridge circuit controls the flow of current through the coil
- Electric (E) field intensity proportional to the slope of the current, and thus the capacitor voltage
- *Conventional* pulse: a trapezoid whose field mimics that of a classic monophasic pulse [2]

However

- given

Clip art: Shmector, YA-Webdesign. [1] Koponen et al., Nulti-locus transcranial magnetic stimulation—theory and implementation, Brain Mapp, 2018.

- Any capacitor voltage will result in a fixed-intensity E-field - The voltage needs to be adjusted if one wants to change the E-field intensity (e.g., manipulating the field patterns induced by a multi-coil transducer) - Especially reducing the voltage is very slow, limiting the rate at which successive pulses can be

2

Approximating lower-voltage pulses

- controlling the pulse waveform
- Neurons won't know the difference, as the charge leakage is a slow process

Fig 2: 1-, 2-, and 4-step approximations of a *conventional* pulse.

Conclusions

- Allows for faster subsequent pulses
- capacitors do not need to be discharged

- Channels driven with maximum voltage, cycling between the bridge modes in microsecond scale - Instantaneous E-field intensity is high but the effective intensity lower, as the field is applied only periodically - Lower-intensity fields can be approximated by - Calculating the necessary switching times is fast compared to discharging the pulse capacitor

- Initial tests indicate that the stepped approximations result in similar brain activation as conventional pulses - A beneficial side effect is the reduced heat generation, as the