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1 BACKGROUND

• Coupling TMS with real-time EEG can improve its efficacy [1]
• However, algorithmic decision making requires time

o Thus, a forecast method for the EEG signal is needed

• So far, only  an autoregressive model has been used for this [1]
• To improve on this, we propose a deep learning model for 

predicting resting state EEG signal in C3-channel
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3 RESULTS & CONCLUSIONS

• Predictions on the test sets of the 50 models achieved a mean absolute error of 0.24 µV

EXPERIMENT 1

FIGURE 4. Mean prediction accuracy 

of the 50 models.

EXPERIMENT 2

FIGURE 5. Distribution of the errors for each 

condition. Each score represents the mean error of 

predictions of one model on one of its test subjects.

• Medians of errors of the 
different models range from 

0.42 to 0.44 µV

• Here, the models trained on 60 
subjects (with data limited to 

1/3) achieved a mean absolute 
error of 0.56 µV

(cf. Experiment 1)

• These findings suggest that the 
generalisability of the model 

doesn't depend on the amount 
of subjects used but rather on 

just having more data

*Data sets were retrieved 

from PRED+CT 

(http://predict.cs.unm.edu/), 

accession number d003 [2]
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FIGURE 1. Our model predicts the upcoming signal in one EEG channel based on 

preceding signal in the same channel.

FIGURE 2. The model architecture.

• Resting state ey es open data from 
healthy  subjects (N=72)*

• Band-pass filtered to 8-12 Hz

DATAMODEL
• The model is a close 

adaptation of the 

Wavenet-model [3]

• The main ingredients are 
causal convolution 

operations that enable 
causal analy sis of the 

time series

EXPERIMENTS

• All predictions are for upcoming 
150 ms based on the previous 

1500 ms
• For each model ...

• … the train and test data sets 

were chosen at random from the 
pool of subjects

• … test data was from 10 

subjects

Experiment 1
• 50 models were trained, each with 

data from 60 subjects

Experiment 2
• 50 models x 20, 30, 40, 50 & 60 

subjects
• The amount of data per subject 

was decreased proportionately as 
the amount of subjects was 

increased

2 METHODS

FIGURE 3. An example prediction made 

by  one of the models.


