

Layer-Engineered Functional Inorganic-Organic Materials and Interfaces through ALD/MLD

Maarit Karppinen

*Department of Chemistry and Materials Science, Aalto University, FI-00076 Espoo, Finland
maarit.karppinen@aalto.fi*

Abstract: The combined ALD/MLD technique is strongly emerging as a viable technology for the fabrication of new types of metal-organic materials and inorganic-organic interfaces. The technique is derived from the ALD (atomic layer deposition) technology commercially used for the fabrication of high-quality inorganic thin films, and from its less exploited counterpart for purely organic thin films, i.e. MLD (molecular layer deposition). In ALD/MLD the hybrid thin film is grown from gaseous metal and organic precursors through surface-saturated reactions which enables the hybrid film growth with atomic/molecular level precision. We have already developed well-controlled ALD/MLD processes for a wide palette of metal (alkali/alkaline earth metals, d-block transition metals and lanthanides) and organic (arenes, pyridines, nucleobases, azo molecules, etc.) constituents.^[1-3] Also, the technique is capable of yielding in-situ crystalline thin films of structures similar to those known for so-called coordination polymer or metal-organic framework (MOF) materials synthesized from solutions, or even entirely new compositions/structures.^[1,4,5] An exciting example of the latter case is the crystalline lithium quinone thin films; the structure contains the Li⁺ cations in a coordinatively unsaturated three-fold coordination, which explains why it can not be synthesized through conventional solution synthesis. This material was long wanted though, as it is a promising organic cathode material for Li-ion microbattery with ultrathin layers.^[6] Another interesting approach enabled by ALD/MLD is to build superlattices or gradient materials with precisely tailored inorganic-organic interface frequencies. Such layer-engineered thin films are useful for example for bandgap tuning,^[7] and phonon blocking,^[8] needed e.g. for enhanced thermoelectric energy harvesting. In this lecture, I discuss the fundamentals and future application possibilities of ALD/MLD.

Key words: Atomic layer deposition, Molecular layer deposition, Metal-organic materials, Inorganic-organic interfaces, Energy harvesting and storage

References

- [1] J. Penttinen, M. Nisula, M. Karppinen, *Chem. Eur. J.*, 23 (2017) 18225.
- [2] Z. Giedraityte, J. Sainio, D. Hagen, M. Karppinen, *J. Phys. Chem. C*, 121 (2017) 17538.
- [3] A. Khayyami, M. Karppinen, *Chem. Mater.*, 30 (2018) 5904.
- [4] E. Ahvenniemi, M. Karppinen, *Chem. Commun.*, 52 (2016) 1139.
- [5] M. Nisula, J. Linnera, A.J. Karttunen, M. Karppinen, *Chem. Eur. J.*, 23 (2017) 2988.
- [6] M. Nisula, M. Karppinen, *J. Mater. Chem. A*, 6 (2018) 7027.
- [7] A. Tanskanen, M. Karppinen, *Phys. Stat. Solidi – RRL*, (2018) 1800390.
- [8] F. Krahl, A. Giri, J.A. Tomko, T. Tynell, P.E. Hopkins, M. Karppinen, *Adv. Mater. Interfaces*, 5 (2018) 1701692.