
People encounter uncertainties in their ev- 
eryday lives: the more serious uncertainties 
cause anxiety and the lighter ones bring ex-
citement. Also computational results in- 
clude uncertainty. Its sources are, among 
other things, idealizations in the computa- 
tional model and inexact knowledge of its 
parameters. These uncertainties can be, 
taking into account different sources of 
uncertainty, managed by quantifying the 
uncertainties of the computed quantities. 
This is called uncertainty analysis. -

The results of uncertainty analyses are 
at most as good as the data used in them. 
Quality assurance methods aim to ensure 
that the data used in the analyses are ade- 
quate, e.g., have certain properties. This dis- 
sertation takes a look at uncertainty analysis 
applied to reactor physics from the view- 
point of quality assurance. 
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The purpose of uncertainty analysis is to quantify the level of confidence one can have in cal- 
culated quantities of interest. In this respect, uncertainty is lack of confidence in the calcu- 
lated values. In this Thesis uncertainty analysis is applied to reactor physics, which predicts 
the behavior of nuclear reactors based on radiation transport theories and nuclear data. 

The motivation is mainly twofold. First, in order to assess reliability of the computed results 
all calculated quantities of interest should have representative uncertainty estimates. Second, 
in its recent Regulatory Guides on Nuclear Safety the Finnish Radiation and Nuclear Safety 
Authority allows, instead of conservative estimates, the usage of realistic, best-estimate values 
of safety parameters augmented by uncertainty estimates. 

There are different sources of uncertainty and it is not always a priori obvious which of the 
components dominate the uncertainties in the quantities of interest. Therefore, an estimate for 
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the largest source of uncertainty. In this Thesis, this is verified in a few simple cases. 

In the course of the work some of the present uncertainty estimates of nuclear data were 
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covariances in multigroup form. 

There are several nuclear data evaluation projects in the world. Their evaluated nuclear data 
have discrepancies. The best-estimate values might differ or the nuclear data community does 
not agree on how well a piece of nuclear data is known. This is another quality assurance issue, 
which is considered in this Thesis. 

The most important practical implications of the work presented in this Thesis are introduc- 
tion of quality assurance methods that can be and were implemented as computer routines and 
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applications such as verifying that covariances of fission yields retain proper normalization. 
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1. Introduction

A prediction is a statement about future events. A useful prediction is

only rarely certain, regardless of the scope and fidelity of the process that

led to the prediction. Therefore, it is worthwhile to estimate how confident

one is that the predicted events will occur. It is the purpose of uncertainty

analysis to quantify this level of confidence [1]. The lack of confidence is

referred to as uncertainty. The amount of uncertainty that can be toler-

ated in the predictions is application specific.

Uncertainty analysis can be applied to any field. Many fields are needed

to predict behavior of nuclear reactors: reactor physics is essential for all

reactors; thermal-hydraulics, heat transfer, and fields relevant to fuel be-

havior need to be considered for all but zero-power reactors. For safety

analysis in accident situations even more fields, such as structural me-

chanics, might be relevant [2]. However, in this Thesis only applications

to reactor physics are considered. In reactor physics the behavior of nu-

clear reactors is predicted based on radiation transport theories and nu-

clear data, which describe interaction of radiation with matter [3].

The results of calculations are at most as good as the data used in them

and uncertainty analysis is not an exception. Uncertainties in nuclear

data are a major source of uncertainty. Therefore, quality of the un-

certainty estimates of nuclear data is of prime importance. Uncertain-

ties in nuclear data are usually represented as covariances, which should

have certain properties mandated by probability theory and physical con-

straints [4]. However, in practice the evaluated nuclear data files contain

covariances that do not have these properties. If the covariances used in

uncertainty analysis severely violate these properties, the results of un-

certainty analysis are questionable, at the best. Proper quality assurance

programs should detect improper data so that, for example, erroneous

estimates of confidence in safety parameters are not trusted upon when

assessing plant safety.

1
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1.1 Background

Electricity generating nuclear power reactors are typically used to pro-

duce steam, which is used to drive conventional steam turbines. The

turbines are coupled to a generator that produces electricity. The steam

might be produced directly in a reactor like in, e.g., boiling water reactors

and present graphite moderated water cooled reactors, or indirectly in

heat exchangers like in, e.g., pressurized water reactors, gas cooled reac-

tors and various fast neutron spectrum reactors. There are also reactors

that are used for other peaceful purposes: ship propulsion, isotope pro-

duction, medical irradiation, and research, for example [5]. Peaceful use

of nuclear energy is typically regulated. In order to ensure that reactor

operation is safe, it is necessary to demonstrate that the probability for a

large radiation emission is very, very low and as low as practically possi-

ble. This is achieved through various safety analyses that are specific to

plant-type, plant and operating cycle [2,6,7].

Until recently, the Finnish Radiation and Nuclear Safety Authority

(STUK) required that safety analyses must be performed using conser-

vative methods, in which the computational models and their parameter

values are deliberately chosen to be those that yield the worst possible

outcomes [6]. However, it is not always straightforward which parameter

combinations yield the worst possible outcomes and, when several safety

parameters are estimated simultaneously, conservative parameter values

might not exist [2, 6, 7]. Therefore, the present safety standards of Inter-

national Atomic Energy Agency (IAEA) recognize safety analysis based on

realistic best-estimates of the safety parameters as an acceptable option

as long as uncertainties in the predicted values of the safety parameters

are estimated. This “best-estimate plus uncertainty” approach is also ac-

cepted in the 2013 version of the Regulatory Guides on Nuclear Safety

(YVL) of the Finnish Radiation and Nuclear Safety Authority [8].

1.2 History

The procedures to generate uncertainty estimates for nuclear data were

first widely discussed in the 1970s and 1980s [9]. A format to encode these

in the evaluated nuclear data files, which were and are used to distribute

estimates of nuclear data, was designed in 1973 prior to which the only

method to include uncertainty estimates was through human-readable

2
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documentation [10]. The first uncertainty estimates of nuclear data were

released in 1975 for three materials and by 1985 there were uncertainty

estimates for 24 materials [11]. The activity languished during the 1990s

due to constrained resources and limited interest by users [12].

The interest of nuclear researchers, industry and regulators returned in

this millennium with increasing demand for confidence bounds for model

predictions [13]. Subsequently, there has been a proliferation of uncer-

tainty estimates for nuclear data. The Japanese efforts for sodium cooled

fast reactors resulted in uncertainty estimates for twenty relevant mate-

rials, which were released in 2002 [14]. The following release in 2011 con-

tained uncertainty estimates for 95 materials [15]. The European collab-

oration resulted in 37 materials with uncertainty estimates in 2005 [16].

The work in the United States resulted in uncertainty estimates for 26

and 190 materials in 2006 and 2011, respectively [17, 18]. In addition, the

American effort provided low-fidelity uncertainties for almost all of their

393 evaluated materials in 2008 [19]. These are intended to be replaced

with high-fidelity uncertainty estimates in the future. The TALYS-based

evaluated nuclear data library should also be mentioned for its paradigm

in nuclear data evaluation [20]. It has resulted in even-quality uncer-

tainty estimates for over 2000 materials above the energy region of re-

solved resonances.

1.3 Recent and related activity

The Nuclear Energy Agency of the Organisation for Economic Co-oper-

ation and Development (OECD/NEA) has a Nuclear Science Committee.

The Nuclear Science Committee launched an expert group on Uncertainty

Analysis in Modelling in 2005. In the following year, this resulted in a

benchmark called “Uncertainty Analysis in Best-Estimate Modeling for

Design, Operation and Safety Analysis of LWRs”, which focused on light

water reactors – the most commonly employed power reactor type [13,

21, 22]. The benchmark covers fields relevant in neutronics calculations,

thermal-hydraulics modeling and fuel behavior. Their combination pro-

vides additional challenges [23]. The example cases in Publication IV are

exercises in this benchmark.

The Working Party on International Nuclear Data Evaluation Co-opera-

tion of the OECD/NEA Nuclear Science Committee established Subgroup

33 on “Methods and issues for the combined use of integral experiments

3
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and covariance data” in 2009 [24]. Integral experiments provide indirect

information about nuclear data, which must be assimilated to existing

data in order to be useful. The procedure is generally called data ad-

justment and assimilation, and it can be used to calibrate models and,

by the introduced new data, to improve their prediction capabilities [23].

However, the improvements are limited to systems that are similar to the

system from which the integral data were measured.

IAEA’s project “Global Assessment of Nuclear Data Requirements” aims

to quantify the expected benefit of any nuclear data measurements in

reducing the uncertainties of computed quantities of interest [25]. The

ambitious work would result in useful guidance in determining which ex-

perimental data should be measured and which experimental techniques

should be used. The project considers data from both differential experi-

ments and integral experiments. However, the work requires the avail-

ability of a complete and consistent evaluation of nuclear data covari-

ances. The covariance data in the present nuclear data libraries are really

not adequate to serve as a uniform and consistent baseline for this kind

of planning [25].

In addition, OECD/NEA has a programme called “Best Estimate Meth-

ods – Uncertainty and Sensitivity Evaluation” in the field of thermal-hy-

draulics [26]. Uncertainty analysis applied to thermal-hydraulics has also

resulted in a few recent dissertations, e.g., Refs. [27,28].

1.4 Terminology

The concept of uncertainty as a quantifiable attribute is historically rela-

tively new although the concept of error and error analysis has long been

understood [29]. The term “error” means difference between a value of a

physical quantity and its true value although it is sometimes used to refer

to a mistake or blunder [29,30]. The term “uncertainty” means a measure

of the lack of knowledge of the true value of a physical quantity [29]. Us-

ing “error” to refer to “uncertainty” causes confusion.

Positivity of variances and positive definiteness of covariance matrices

and operators stem from the same physical argument. In cases where the

data is at least partly redundant one talks about non-negativity of vari-

ances, positive semidefiniteness of covariance matrices and, confusingly,

positivity of covariance operators. The distinction is made in Chapter 2

but, since only essentially finite dimensional operators are used in prac-

4
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tice, subsequent chapters use mostly the terminology used with covari-

ance matrices.

Uncertainty analysis can be performed using deterministic or statisti-

cal methods. A typical adjunct to uncertainty analysis is apportioning the

uncertainty of a quantity of interest to uncertainties of parameters. In

the context of statistical uncertainty analysis, this is referred to as “sensi-

tivity analysis” [31]. However, in the context of deterministic uncertainty

analysis “sensitivity analysis” means quantifying the effects of parameter

variations on the quantities of interest [1]. It is hoped that the established

dual use causes no confusion.

The methods presented in the Publications I–III are, in fact, algorithms

since they terminate in a finite number of steps. While this is not an error,

the inconvenient naming is solely the author’s fault.

1.5 The main contributions of the Thesis

The main contributions of Publications I–III are quality assurance meth-

ods that can be used to verify whether evaluated covariances of nuclear

data have certain properties or not. These can be used as a part of quality

assurance programs. In addition, Publications I–III provide methods to

compute nearby covariances that, depending on the details, either have

the desired properties or at least violate the desired properties less.

The main contribution of Publication IV is the identification of several

order-of-magnitude differences between different nuclear data libraries in

uncertainty estimates of nuclear data that have a significant contribution

to uncertainties of certain quantities of interest regarding pressurized wa-

ter reactors. The used methods can be interpreted as an estimation of

world view uncertainty.

The main contributions of Publication V are the consideration of differ-

ent sources of uncertainty and inclusion of nuclide concentration uncer-

tainty in parameter uncertainty. The estimates of their magnitudes veri-

fied that the uncertainty due to uncertainties in nuclear data dominated,

as expected, in the considered cases.

1.6 Organization of the Thesis

The intention in this Thesis is to provide an introduction to uncertainty

analysis in reactor physics although many of the presented methods are

5
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general. Contributions of the Publications I–V are pointed out but not

completely rewritten here. Interested readers are referred to the appen-

dices.

The remainder of this Thesis is organized as follows. In Chapter 2 con-

cepts for physical quantities that allow quantifying their uncertainties

are introduced. It is important to note that the interesting quantities in

different systems are also physical quantities in this sense, and interpre-

tation of uncertainties of quantities of interest follows directly from the

introduced concepts. The scope of Chapter 3 is nuclear data and mod-

els in reactor physics. It comments on present uncertainty estimates of

nuclear data and presents two salient models. Chapter 4 presents uncer-

tainty analysis in a general manner but discusses it from reactor physics

point of view. A categorization for different sources of uncertainty is pro-

posed. Summaries of the Publications are presented in Chapter 5 and

finally concluding remarks are given in Chapter 6.

6



2. Physical quantities

Arguably the simplest physical quantities are quantities whose value2 is

a single real number in appropriate units [32]. However, the knowledge of

the value is always imperfect: even in these simple cases the values of the

physical quantities can not be known exactly [1,23]. A consequence of this

simple statement is that the lack of knowledge of the values of physical

quantities needs to be addressed.

The lack of knowledge of the values of physical quantities is also referred

to as uncertainty in the physical quantities. There are many approaches

that can be used to address uncertainty in the physical quantities [2].

One approach is to quantify the lack of knowledge. One way to quantify

it is to assign subjective levels of confidence for statements that claim

the value to be within a certain interval. The levels of confidence can

be interpreted as probabilities [33, 34]. In the limit of suitable intervals

non-contradicting probabilities form a probability distribution [35].

The interpretation of levels of confidence as probabilities can be catego-

rized as a subjective probability interpretation, since the assigned prob-

abilities can vary between persons with at least slightly different knowl-

edge of the physical quantity in question [23]. Indeed, in this work ob-

jectivity is assumed in the sense that any rational person with the same

information should assign the same probabilities [34].

In this work the knowledge of the value of a physical quantity is concep-

tually modeled as a subjective probability distribution, which describes

how probably the value of a physical quantity is within any interval. Sec-

tion 2.1 covers the case of a single physical quantity, and Section 2.2 gen-

eralizes the notion for finite numbers of physical quantities. The intelligi-

ble and intuitive interpretation of levels of confidence for each interval is

2Sometimes the true value of a quantity is used in lieu of the value of a quantity,
and the term “value” is reserved for less specific meaning.
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lost for more complex physical quantities, such as quantities that depend

on a parameter [36]. Unfortunately, such quantities are encountered in

practice. A model for these is presented in Section 2.3.

2.1 A physical quantity

The knowledge of the value of a physical quantity can be modeled as

a probability distribution that allows calculating probabilities that the

value of the physical quantity is within a given interval. In this work it is

required that the probability distribution has a probability density func-

tion, which limits the probability distribution to be a continuous probabil-

ity distribution [37]. The requirement can be relaxed, if necessary, at the

expense of referring to a slightly more cumbersome cumulative distribu-

tion function rather than a probability density function.

To elaborate on probability density functions, consider a physical quan-

tity α whose value is denoted by α̂. The probability that the value is

within an interval [ a, b ] is denoted by P[ a ≤ α̂ ≤ b ]. The probability den-

sity function is then defined as a non-negative function p : R �→ R
+
0 for

which

P[ a ≤ α̂ ≤ b ] =

∫ b

a
p(α) dα. (2.1)

Such a function exists as long as the assigned probabilities are not con-

tradictory. It is conventional to assign 1 for P [−∞ ≤ α̂ ≤ ∞ ].

The first two moments of the distribution are commonly used in practice

although their existence needs to be assumed. This restricts the possible

probabilities that can be assigned. The first moment and the second cen-

tral moment of the distribution are

mean(α) = E[α ] and (2.2a)

var(α) = E[ (α− E[α])2 ], (2.2b)

where the expectation operator, E[ · ], maps functions to real numbers

according to
∫∞
−∞ · p(α) dα [38]. The first moment is also called mean,

expected value, or best-estimate although the last name is susceptible to

debate. The second central moment is positive, since the value of the phys-

ical quantity is not known. It is called variance and the positive square

root of variance is standard deviation. The ratio of standard deviation to

mean is called relative standard deviation.

Mean and standard deviation are indicators of the value of a physical

quantity and its uncertainty, respectively. Sometimes these are the best

8
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(a) ENDF/B-VII.1 [18]. (b) JEFF 3.1.1 [39].

Figure 2.1. Subjective distributions that describe the knowledge of the neutron half-
life assuming that only the first two logarithmic moments and positivity to
be known. The best-estimates differ slightly, and the knowledge in (a) is
more certain than the knowledge in (b). The expected value is in shown in
blue. There is about a 76.1% (95.4%) probability that the neutron half-life
is between the green (red) bars.

indicators, particularly when the uncertainties are small [23]. The first

two moments are illustrated in Fig. 2.1 for a physical quantity. Informally

standard deviation may be referred to as uncertainty.

2.1.1 Characterizing the probability density function via
experiments

In principle, the probability density function can be set arbitrarily, since

the distribution is subjective. A more objective probability interpreta-

tion is required if it is required that, given the same information, any

rational persons would assign the same probabilities. This requirement

is highly encouraged. Information about physical quantities is obtained

mostly from experiments [1].

In experiments a physical quantity, the measurand, is measured either

directly or indirectly using a measuring instrument [1]. When the mea-

surand is observed repeatedly, multiple measured values are obtained.

In such a situation the frequentist probability interpretation, see e.g.

Ref. [40], is straightforward [23]. In the interpretation, probability is

seen as a relative frequency: the probability for the measured value to

be within a given interval is determined, in principle, in the limit of infi-

nite measurements [1]. In the frequentist view it is meaningless to assign

a probability for the value of a physical quantity to be within an inter-

val, since the unknown but fixed value of the physical quantity either is

or is not in the given fixed interval. This is in contrast to the subjective

9
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interpretation, where such a view is meaningful.

It is impossible to perform infinite measurements, and therefore even

the probability distribution that describes the knowledge of the value of

the measurand must be estimated. Type A estimation is based on statisti-

cal inference and Type B estimation on other, often subjective, means [29].

The decision on what properties to estimate is also subjective.

The most important features of measured values are the measures of

location and dispersion [23]. The location is an indicator of the value of

the measurand while the dispersion is an indicator of the non-reliability

of the measurement [29]. The location of measured values is usually best

described by mean, while their dispersion appears to be best described by

standard deviation [23]. Therefore, the subjective choice is typically to

estimate moments of the distribution although only the first few can be

estimated. After estimating the first few moments there is considerable

freedom in assigning the probabilities. This is a reason for modeling the

knowledge of values of physical quantities as subjective rather than ob-

jective probability distributions. In fact, even if all moments of the distri-

bution would be deduced, these would not fully specify it without further

information [41].

Objectivity in decisions may be partially remedied by using the princi-

ple of maximum entropy [42, 43]. The maximum entropy principle states

that after arbitrary properties of the distribution are specified, the distri-

bution that contains least other information is the one with the largest

entropy. Entropy has a direct relationship to information theory [44]. It

should be noted that not specifying a known property of the distribution

is a subjective decision to disregard the information that describes such a

property.

2.1.2 Specific maximum entropy probability distributions

Consider a physical quantity α assuming that it has been measured and

the mean μ and the standard deviation3 σ of the observations have been

inferred. Disregarding other information and applying the principle of

maximum entropy results in a normal distribution [45]. Its probability

density function is

p(α) =
1√
2πσ2

exp

(
−(α− μ)2

2σ2

)
. (2.3)

3In reactor physics, the symbol σ is used to denote a physical quantity called
microscopic cross section. It is hoped that this dual use causes no confusion.

10



Physical quantities

In some cases, the values of physical quantities are inherently non-

negative. If non-negativity, mean, m = E[ ln(α) ], and variance, v2 =

E[ (ln(α) −m)2 ], of the logarithms of the measured values are considered

as all available information, the principle of maximum entropy results in

a log-normal distribution [45]. Its probability density function is

p(α) =
1√

2πv2α2
exp

(
−(ln(α)−m)2

2v2

)
, α > 0 . (2.4)

In terms of mean, μ, and variance, σ2, of the measured values, the param-

eters m and v2 are ln(μ2/
√

σ2 + μ2) and ln(σ2/μ2 + 1), respectively [46].

These probability distributions are commonly used to describe the knowl-

edge of values of physical quantities. The distributions are equivalent in

the limit of diminishing relative uncertainty [30]. For example, the distri-

butions in Fig. 2.1 are log-normal but equivalent normal distributions are

indistinguishable for the eye.

It should be emphasized that usually some information has been dis-

regarded before a specific probability density function is obtained. For

inclusion of other information such as support on a bounded interval, or

non-negativity and first two moments, see for example Ref. [45].

2.1.3 Probability distributions and random variables

Mathematically, each probability distribution describes a random vari-

able [37]. Therefore, the approach in this work is to model the knowledge

of the value of a physical quantity as a random variable. However, the

concept of the random variable is unnecessary for the application. The

natural language is misleading here, and it is emphasized that physical

quantities are not inherently random, since physical quantities are char-

acterized by a single unique value [29,32].

However, the model of the knowledge of the values of physical quanti-

ties as probability distributions is not limited to physical quantities. The

model is applicable to any variable, whose values vary with statistical

regularity, that is, whose values can be measured and the measured val-

ues can be modeled as a probability distribution [1]. In such a case, the

distribution describes both the knowledge of the variable and its statisti-

cal nature – the uncertainty is partly aleatory, which can not be removed

since it is inherent in the variable [47]. In the case where the statisti-

cal nature of the variable dominates the distribution, the word “random

variable” has its non-technical meaning.

11
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2.2 Multiple physical quantities

The notion of the knowledge of the value of a physical quantity can be

generalized for many but a finite number of physical quantities. Con-

sider k physical quantities α1 through αk. It is useful to concatenate

these into a vector α = (α1, . . . , αk)
ᵀ. Their values are denoted by α̂ =

(α̂1, . . . , α̂k)
ᵀ ∈ R

k. Given k intervals whose lower and upper bounds are

a = (a1, . . . , ak)
ᵀ ∈ R

k and b = (b1, . . . , bk)
ᵀ ∈ R

k, respectively, the joint

probability that each value is simultaneously within their respective in-

terval is denoted by P[ a ≤ α̂ ≤ b ], where the comparison is to be made

component-wise. The joint probability density function is then a function

p : Rk �→ R
+
0 for which

P[ a ≤ α̂ ≤ b ] =

∫ b1

a1

· · ·
∫ bk

ak

p(α1, . . . , αk) dα1 · · · dαk. (2.5)

The first moment and the second central moment of the distribution are,

assuming their existence,

mean(α) = E[α ] ∈ R
k and (2.6a)

cov(α, α) = E[ (α− E[α])(α− E[α])ᵀ ] ∈ R
k×k, (2.6b)

where the expectation operator, E[ · ], maps functions to real numbers

according to
∫∞
−∞ · · · ∫∞

−∞ · p(α1, . . . , αk) dα1 · · · dαk [38]. The names of the

first moments follow the case of a single quantity but the second cen-

tral moment is called covariance matrix or variance-covariance matrix

since its diagonal contains the variances and off-diagonals pairwise co-

variances. The positivity of the variances is generalized by the require-

ment of positive definiteness of the covariance matrix. Assurance of this

property is considered in Publication I. Correlation matrix is a scaled co-

variance matrix, that is,

corr(α, α) = diag(std(α))−1 cov(α, α) diag(std(α))−1, (2.7)

where std(α) is the vector of standard deviations. The operator diag( · )
transforms a vector into a non-surprising diagonal matrix and, when ap-

plied to a matrix, the diagonal of the matrix into a non-surprising vector.

The inverse exists since the standard deviations are strictly positive for

imperfectly known physical quantities. The correlation matrix has a unit

diagonal and contains correlation coefficients, or correlations, in off-diag-

onals [48].

The difference to the case of a single physical quantity is that the knowl-

edge of the value of a physical quantity can depend on the knowledge of
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the values of other physical quantities. Sets of physical quantities that are

mutually independent can be treated as separate sets of physical quanti-

ties that have absolute nothing to do with each other. Sets of mutually

independent variables imply that the covariance matrix can be ordered to

be a block diagonal matrix where each matrix on the diagonal consists of

a single block. This is exploited in the computational method presented

in Publication I.

Typical causes of the dependency between different physical quantities

are the use of the same measuring instrument at the same or different

time, the use of the same calibration device or reference value, the use of

the same measuring method, and even measurements that are performed

by the same experimenters [23, 30]. Also measuring multiple materials

in a single experiment, like in integral experiments, causes dependen-

cies [49]. Estimation of the dependency is not always straightforward [30].

The difference is manifested in the correlations. The correlation coeffi-

cient is a measure of the degree of linear dependence between the knowl-

edge of the values of the two physical quantities. These vanish if the

knowledge is independent but the converse is not necessarily true: van-

ishing correlations do not imply that the knowledge is independent [23].

More importantly: non-vanishing correlation implies a dependency, linear

or non-linear, between the knowledge of values of physical quantities.

For example, consider two physical quantities that are believed to be

positively (negatively) correlated. If the value of the first quantity is

slightly larger than the expected value, then it is believed that the value

of the second quantity is also slightly larger (smaller) than its expected

value.

As with the case of a single physical quantity, the experimenters need

to make subjective decision on which properties of the distribution to es-

timate. It should be noted that correlation does not provide a complete

description of the dependencies of all physical quantities. It is merely a

part of the second central moment, and third and higher moments could

be, at least in theory, estimated.

Consider the k physical quantities and assume that the means μ and

the covariance matrix4 Σ have been estimated. Disregarding other infor-

mation and applying the principle of maximum entropy results in a mul-

4In reactor physics, the symbol Σ is usually used to denote a physical quantity
called macroscopic cross section. It is hoped that this dual use causes no confu-
sion.
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tidimensional normal distribution [45]. Its probability density function

is

p(α) =
1√

(2π)k det(Σ)
exp

(
−1

2
(α− μ)ᵀΣ−1(α− μ)

)
, (2.8)

where det(Σ) is the determinant of the covariance matrix. If it is assumed

that the physical quantities are inherently non-negative, and the means,

m = E[ ln(α) ], and the covariance matrix, V = E[ (ln(α)−m)(ln(α)−m)ᵀ ],

of the logarithms of the values have been estimated, the principle of max-

imum entropy results in a multidimensional log-normal distribution [45].

Its probability density function is

p(α) =
1√

(2π)k det(V )
∏k

i=1 α
2
i

exp

(
−1

2
(ln(α)−m)ᵀV −1(ln(α)−m)

)
,

(2.9)

where α > 0 component-wise. In terms of the means, μ, and covariance

matrix, Σ, of the non-logarithmized values, the parameters m and V are

ln(μ2/
√

diag(Σ) + μ2) and ln(diag(μ)−1Σdiag(μ)−1 + 1), respectively [46].

Here the logarithm, power, division and square root are applied compo-

nent-wise and the “1” is a matrix of ones. The inverses exist since the

average of measured values of imperfectly known inherently non-nega-

tive physical quantities are positive.

The author is not aware of transformation formulae for the case that

inherently non-negative and unconstrained physical quantities are corre-

lated. In such a case one can first take the logarithms of the measured

values of the inherently non-negative physical quantities and then com-

pute the means and covariance matrix.

2.3 Physical quantities that depend on a parameter

The notion of the knowledge of the value of a physical quantity is much

less straightforward to generalize for a physical quantity that depends

on a parameter5 than for a finite number of physical quantities. The de-

tails depend on the cardinality of the parameter. Here it is assumed that

the parameter has the cardinality of either a rational or a real number.

These include parameters that depend on a finite number of rational or

real numbers, respectively. Parameters with the cardinality of a finite

set are equivalent to the case of multiple physical quantities and are not

5An intended application is, for example, a piecewise continuous cross section,
whose parameter is energy. Such quantities are usually measured indirectly. The
discussion is still kept at a general but practical level.
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reconsidered here.

In this work the physical quantities that depend on a parameter are re-

ferred to as physical functions. In probability theory, the generalizations

are called random functions [50–54]. A random function can be under-

stood as a collection of random variables whose cardinality is the same

as that of the parameter. For a fixed value of the parameter, the ran-

dom function reduces to a random variable. When physical functions are

smooth enough, e.g., continuous, they can be described by a countable

number of random variables [51]. As with the finite dimensional cases,

one usually assumes a finite variance for the random functions [51].

A problem with the theory is that the probability density function does

not exist in general [36], and the definition via the system of all finite dis-

tribution functions is awkward. This makes the interpretation of a ran-

dom function considerably harder than the interpretation of multiple of

physical quantities. There is, however, no technical reason not to consider

physical functions as random functions.

Usually, physical functions are not measured directly although there

are direct methods for certain cases. Therefore, the usual procedure is

to perform an indirect measurement: a finite number of physical surro-

gate quantities that describe the physical function are measured [29,30].

Consider k surrogate quantities, which are concatenated into the vector

β = (β1, . . . , βk)
ᵀ, and for which the interpretation described by Eq. (2.5)

holds. Consider also l physical functions α = (α1(x;β), . . . , αl(x;β))
ᵀ that

depend on the surrogate quantities and the parameter x through the mea-

surement model. Naturally the measurement model depends on the phys-

ical function and the chosen surrogate quantities [1]. The measurement

model might also bring theoretical information to the results. However,

the measurement model is always an idealization and therefore intro-

duces additional uncertainty, which must be accounted for. The prob-

abilistic nature of these physical functions is completely determined by

the surrogate quantities, and therefore they are effectively finite dimen-

sional [55]. Interested readers are referred to Publication III and refer-

ences therein.

The first two moments of the physical functions are

mean(α(x)) = E[α(x;β) ] and (2.10a)

cov(α(x), α(x′)) = E[α(x;β)α(x′;β)ᵀ ]− E[α(x;β)] E[α(x′;β)ᵀ], (2.10b)

where the expectation is taken over the surrogate quantities. The mean
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(a) Best-estimates. (b) Correlations.

Figure 2.2. Subjective distributions that describe the knowledge of the neutron elastic
scattering cross section from 4

2He as a function of neutron incident energy
and assuming that only the first two moments to be known. The cross section
is well known. (a) The expected value is in shown in blue, and there is
about a 99.4% probability that the values of the cross section are between
the red lines. (b) The correlations are mainly positive. Best-estimates from
ENDF/B-VII.0 [17] with the low-fidelity covariance data [19]. Figure adapted
from Publication III.

is a function of the value of the parameter and belongs to a direct sum

of l function spaces. A typical choice is direct sum of L2-spaces. The co-

variance is a function of a pair of the values of the parameters and is a

measure of the correlation between these values. The covariance belongs

to a direct sum of l × l function spaces, which are, again, typically chosen

to be L2-spaces. The covariances form the kernel of a covariance oper-

ator. Since the operator effectively represents the surrogate quantities,

it includes redundant data and should be positive rather than positive

definite, i.e., the operator should have a non-negative spectrum. Again,

correlations are scaled covariances, that is,

corr(α(x), α(x′)) = diag(std(α(x)))−1 cov(α(x), α(x′)) diag(std(α(x′)))−1

(2.11)

for all x and x′. Here std(α(x)) contains the standard deviations. The in-

verse exists since the standard deviations are strictly positive for imper-

fectly known physical quantities. The first two moments are illustrated in

Fig. 2.2 for a single physical function for which the dependent parameter

is energy.

The choice of surrogate quantities is naturally subjective and has an

effect on the resulting physical function. The subjectivity of the choice is,

however, common to all physical quantities that are measured indirectly.

The author is not aware that the principle of maximum entropy would

have been applied to random functions.
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3. Nuclear data and models in reactor
physics

Physical quantities that describe interactions between neutrons or gamma

radiation and matter, and physical quantities that describe properties of

radioactive nuclei and neutrons are referred to as nuclear data in reac-

tor physics. In this work gamma radiation is not considered further. The

main reason for this is the lack of uncertainty estimates for its interaction

data in the general-purpose nuclear data libraries.

Nuclear data are most often measured in differential experiments, which

are predominantly compiled in the Experimental Nuclear Reaction Data

(EXFOR) database6 [56]. Additionally, data from criticality experiments are

compiled by the International Criticality Safety Benchmark Evaluation

Project [57]. Even more data are available from various other integral

experiments, which include operating reactors. Usually, the integral data

are not utilized since their usage would inevitably lead to dependencies

between physical quantities. However, the experimental data are not us-

able for reactor physics without an evaluation, which is a process of an-

alyzing experimental data and theoretical predictions in order to form a,

presumably subjective, distribution that describes the evaluators’ knowl-

edge of the nuclear data [11].

Evaluations that cover all relevant nuclear data for a material are called,

simply and confusingly, evaluations. The materials are usually nuclides,

i.e., individual species of nuclei, but might be, for example, certain isomer

of a nuclide, natural element of several isotopes or, a nuclide bound in a

chemical compound.

A nuclear data library contains a collection of evaluations. The collec-

tion is usually validated as a whole against selected integral experiments.

6The EXFOR database has for long had the possibility to include variances of ex-
perimental results [25]. However, the possibility to include correlations was im-
plemented only recently [56]. Therefore, any correlations in the older data sets
must be collected from possible documentation or crudely estimated if the former
is not possible.
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There are several evaluation projects in the world that maintain a nuclear

data library. The projects are not completely independent since there are

collaboration and data exchange between the projects. Sometimes indi-

vidual evaluations are taken as-is from the other projects. It should be

emphasized that in uncertainty analyses the used data defines the re-

sults. Therefore, the quality of the characterization of nuclear data is of

prime importance in uncertainty analyses in reactor physics [23].

The canonical format in which evaluations are presented is the eval-

uated nuclear data file format, which is currently at its sixth version

and abbreviated as ENDF-6 format [11]. Despite format changes, exten-

sions and improvements, the format has certain historical design limita-

tions, which restrict the subjective beliefs that the evaluators can express.

Therefore the evaluated nuclear data files contain only approximations of

the evaluators’ knowledge of nuclear data. It has been proposed that the

ENDF-6 format should be replaced by a new generalized nuclear data, GND,

format [58, 59]. Although more flexible and extensible, the proposed for-

mat will not, at its present version, remove all design limitations.

It is important to note that, irrespective of the format, individual evalu-

ations contain approximations of evaluators’ subjective knowledge of nu-

clear data. Even though any rational persons with the same information

would come to the same conclusions about the nuclear data, the evalua-

tors do not possess the same information and conclusions may be biased

due to evaluators’ reasoning and personal choices. Therefore, if desired,

it is usually possible to obtain another opinion by using an evaluation

from another nuclear data library. Differing evaluations can be seen as

differing world views. Sometimes the differences are in the best-estimate

values, and sometimes the best-estimate values are surprisingly close to

each other but the evaluations lack agreement on how well the physical

quantities are known. In Publication IV several order-of-magnitude dif-

ferences between world views of important pieces of nuclear data of a few

nuclear data libraries were identified.

Three general-purpose nuclear data libraries contain a considerable num-

ber of evaluations with uncertainty estimates: the United States evalu-

ated nuclear data file, ENDF/B [18], OECD/NEA Data Bank coordinated joint

evaluated fission and fusion file, JEFF [60], and Japan evaluated nuclear

data file, JENDL [15]. In addition, the low-fidelity covariance project [19]

should be mentioned for its completeness in covariance data, and the

TALYS-based evaluated nuclear data library, TENDL [20], for its complete-
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ness and paradigm in evaluation of nuclear data above energy region of re-

solved resonances. Other present general-purpose nuclear data libraries

contain mostly best-estimates only.

Reactor physics uses nuclear data from nuclear data libraries, design

parameters and sometimes other parameters to predict the behavior of

nuclear reactors. These are all physical quantities. The computational

chain in reactor physics contains many phases from evaluated nuclear

data files, design parameters and other data to the relatively few quanti-

ties that describe the safety and behavior of the modeled physical system.

Nuclear data for reactor physics are described in Section 3.1. In addition,

the detection and interpretation of improper covariances of nuclear co-

variance data are described. The definition of multigroup nuclear data co-

variances is clarified since there has been some confusion. In Section 3.2,

the most common models in reactor physics are described.

3.1 Nuclear data in reactor physics

3.1.1 Nuclear reactions

A binary nuclear reaction occurs when two nuclear particles – two nuclei

or a nucleus and a subatomic particle, e.g., a neutron – interact causing

a change in at least one nucleus [5]. Interactions not involving a neutron

and interactions involving more than two nuclear particles are not rele-

vant to the present work. The standard definition does not regard elas-

tic scattering as a nuclear reaction but due to its importance in reactor

physics it will be referred to as such.

The nuclear reactions that are relevant in reactor physics involve a

neutron and a nucleus.7 The reactions can be considered to occur pre-

dominantly in three ways. The first way is the compound nucleus for-

mation [62] where the interacting particles form an unstable compound

nucleus, which decays by emitting one or more particles. The formation of

the compound nucleus is much more probable if the energies of interacting

particles correspond to an excited state of the compound nucleus. These

energies are called resonance energies. For nucleus-neutron interactions

resonance energies are typically within typical energies of neutrons in re-

7The following description is from reactor physics point of view and considerably
simplified compared to nuclear physics. See, for example, Ref. [61], and refer-
ences therein for a more complete description.
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actors. The second way is direct reaction, which is more likely to occur

when the wavelength of the neutron is smaller than the wavelength of

the nucleus [49]. In such a case, the compound nucleus is not formed.

This occurs for relatively high-energy neutrons in reactors. The third way

is more likely to occur when the wavelength of the neutron is comparable

to the interatomic spacing, and the neutron interacts with an aggregate

of bound nuclei instead of a single nucleus [3]. If the bound nuclei have

a regular structure, this gives rise to neutron diffraction. This occurs for

relatively low-energy neutrons in reactors. Alternatively, the reactions

can be classified by the number of intranuclear collisions [49,61].

The most relevant nuclear reactions in reactor physics are the fission,

radiative capture and elastic scattering reactions. In a fission reaction the

nucleus splits into two or more smaller nuclei, called fission products, a

number of prompt neutrons and gamma radiation. The fission products

are unstable and decay usually by beta emission and subsequent gamma

radiation. Sometimes a neutron is emitted in the beta decay chain. These

are important for reactor control and are called delayed neutrons to dif-

ferentiate them from the prompt neutrons. In fissions, energy is released

and it is divided in a complex way between the emitted particles. Fissions

may occur via compound nucleus formation or as direct reactions. In a

radiative capture reaction a compound nucleus is formed. The compound

nucleus decays by emitting gamma radiation. An elastic scattering reac-

tion may undergo either by compound nucleus formation, which decays

by neutron emission and leaves the target nucleus in its original state;

by potential scattering, in which compound nucleus is not formed; or by

neutron diffraction [3].

3.1.2 Resonance parameters and cross sections

A cross section is a measure of the interaction probability between an inci-

dent particle and a stationary target. Cross sections can be interpreted as

the effective cross-sectional area of the target nucleus. For each material

there are different cross sections for every reaction. Also, the interac-

tion probabilities depend on the kinetic energy of the incident neutron.

The cross section at energy E for reaction x of i’th material is denoted by

σi,x(E). Therefore cross sections are physical quantities that depend on a

parameter – the neutron energy.

In addition to cross sections that describe individual reactions, there

are redundant cross sections that are linear combinations of their par-
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Figure 3.1. Part of the forest of redundancies of nuclear data according to the re-
action model in ENDF-6. The trees for cross sections, σ, and average
numbers of neutrons emitted from fissions, ν̄, are shown. The dots show
where the trees are truncated. Parents are redundant nuclear data while
children correspond to partial nuclear data. The sum coefficients are
unity for all children. Figure adapted from Publication II.

tial cross sections. The linear combinations are often loosely referred to

as sum rules. One such cross section is the total cross section that is

a measure of probability that any interaction between the neutron and

the nucleus will occur. These redundancies can be represented as a tree.

The reactions defined in the ENDF-6 format are illustrated in Fig. 3.1. For

covariances, this implies that covariances between the redundant cross

section and its partials sum up to the self-covariance of the redundant

cross section. This is illustrated in Fig. 3.2.

Resonance parameters are surrogate quantities of the cross sections

in the low-medium energy region of the cross sections. These describe

the resonance energy, and relative strengths of fission, radiative capture,

elastic scattering, other reactions and other properties [12]. There is no

predictive theory for neutron-induced reactions in the resonance energy

range but resonance reactions can be well described by the R-matrix the-

ory [63, 64]. In measurements some of the resonances can be resolved

individually, some as averages over an energy interval and some remain

completely unresolved. However, the resonance parameters themselves

can not be measured directly, and are therefore already surrogate quanti-

ties of the actually measured physical quantities. Above the energy region

described by resonance parameters the surrogate quantities can be aver-

age cross sections whose form is, perhaps, described by a nuclear model.

In the ENDF-6 format there is a possibility to encode the first two mo-
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Figure 3.2. Multigroup averaged covariances of cross sections of 35
17Cl. The data are

consistent in the sense that the sum of the first three columns give the
fourth column. The corresponding sum rule is σn,t = σn,p0 + σn,n + σn,γ ,
since the covariances for other reactions are zero. These are abso-
lute covariances and thus not scale free: depending on energy, the
(n,p0) reaction is two or more orders-of-magnitude smaller than the to-
tal reaction, and hence its uncertainty is about two or more orders-of-
magnitude smaller and barely visible at the best. Original data from
ENDF/B-VII.1 [18]. Figure adapted from Publication I.

ments of the evaluators’ knowledge of the resonance parameters. How-

ever, the format does not allow resonance parameters of different materi-

als to be correlated. For unresolved resonances this option is even more

limited.

In reactor physical calculations the resonance parameters are only oc-

casionally used directly, and usually the energy-dependent cross sections

are constructed from the resonance parameters. In the ENDF-6 format the

first two moments of the evaluators’ knowledge of the cross sections may

be encoded with minor limitations. Any cross-reaction and cross-material

correlations may be described. Any contributions from the resonance pa-

rameters to cross sections must be added to both the first moment and the

second central moment. The present nuclear data libraries contain rather

complete sets of uncertainty estimates for the most important materials

and reactions.
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3.1.3 Thermal neutron scattering laws

The chemical state does not considerably affect the high-energy cross sec-

tions of nuclei. However, at thermal energies bound nuclei behave dif-

ferently from free nuclei. Therefore, the evaluations are prepared for in-

dividual nuclides and the low-energy portions of important nuclides in

bound states are evaluated separately. However, only the first moment of

the evaluators’ knowledge of the latter quantities can be encoded in the

ENDF-6 format, and no uncertainty estimates may be given in computer

readable form.

3.1.4 Average number of emitted neutrons per fission

In a fission reaction zero or more neutrons are emitted. The average num-

ber of neutrons emitted from fission is an important parameter in reactor

physics. It is a function of incident energy of the neutron that caused

the fission, and hence a physical quantity that depends on a parameter.

The average number of emitted neutrons per fission for i’th material is

denoted by ν̄i,x(E), where x stands for total, prompt, delayed or one of the

delayed groups. The redundancies are illustrated in Fig. 3.1.

In ENDF-6 format their treatment is essentially identical to the treat-

ment of cross sections. The first two moments of the evaluators’ knowl-

edge of the average number of neutrons emitted per fission can be de-

scribed with minor limitations. Any cross-reaction and cross-material

correlations may be described but cross-quantity correlations, e.g., corre-

lation between a fission cross section and the average number of neutrons

emitted from it, can not be described. This restriction is being lifted in

the generalized nuclear data format [59]. The present nuclear data li-

braries contain rather complete sets of uncertainty estimates for the most

important materials and reactions.

3.1.5 Angular distributions of emitted neutrons

Neutrons are emitted in many reactions, such as elastic and inelastic scat-

tering, neutron duplication, and fission reactions. The neutrons might be

emitted isotropically, i.e., equally probably to all directions, or some angles

between the directions of motion of incident and emitted neutrons might

be preferred. The angular distribution for neutrons emitted in reaction x

that occurred at energy E in i’th material is denoted by fi,x(μ,E) dμ, which
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is the probability that the emitted neutron will be emitted to interval dμ

about an angle whose cosine is μ. This representation assumes azimuthal

symmetry. Therefore the angular distribution is a physical quantity that

depends on two parameters.

In theory, and some practical cases, the resonance parameters are sur-

rogate quantities for angular distributions, i.e., the resonance parameters

are used to calculate the angular distributions. In ENDF-6 format the eval-

uators can encode the first two moments with minor limitations although

the description of the second central moment will be either long or ap-

proximative since essentially four-dimensional data are described. There

is also a possibility to correlate cross sections and angular distributions.

The present nuclear data libraries contain rather complete sets of uncer-

tainty estimates for the most important materials and reactions. How-

ever, the general-purpose libraries contain no estimates for 1
1H, which is

the most important moderator in light water reactions, and only one li-

brary contains an uncertainty estimate of 16
8O.

3.1.6 Energy distributions of emitted neutrons

Generally, the energy of the emitted neutrons is different from the energy

of the incident neutron and may depend on the emission angle. The en-

ergy-angle distribution of the emitted neutrons in reaction x that occurred

at energy E in i’th material is denoted by pi,x(μ,E → E′) dμdE′, which is

the probability that the emitted neutron will be emitted to interval dμ

about an angle whose cosine is μ and within energy dE′ about E′. There-

fore the energy-angle distribution is a physical quantity that depends on

three parameters.

In ENDF-6 format only the first moment of the evaluators’ knowledge of

the energy-angle distributions can be encoded. The second central mo-

ment can only be given to the angle-integrated version of the energy-an-

gle distribution. The covariance must be encoded as piecewise constant

in incident energies and there may be no correlation between different

incident energy intervals.

Fortunately, in elastic and discrete inelastic scattering the angular dis-

tribution defines the energy distribution also, and for fission reaction the

angular distribution is highly isotropic and insensitive to incident ener-

gies in the low-medium energies, so the use of the piecewise constant an-

gle-integrated distribution is a good approximation. The present nuclear

data libraries contain rather complete sets of uncertainty estimates for
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neutrons emitted from the fission reactions of the most important materi-

als but not for other reactions.

3.1.7 Other nuclear data

There are also other nuclear data that describe interactions between a

neutron and matter and properties of radioactive nuclei.

The energy released in fission, and its division into fission products,

prompt and delayed neutrons, gamma and beta radiation and neutrinos

depend on the energy of the incident neutron that caused the fission. In

ENDF-6 format their description, however, differs from the description of

the cross sections. The first moment of the evaluators’ knowledge of these

quantities can be encoded rather freely but, essentially, the quantities are

assumed to be independent. Implicitly, a correlation between the redun-

dant full energy release and its components should be presumed. This

interpretation is made if the heuristic characterization method from Pub-

lication II is used.

The yields8 of fission products depend on the energy of the neutron that

caused the fission. In ENDF-6 format the first moment of the evaluators’

knowledge of the fission yields can be encoded with minor limitations:

the quantities are assumed to be independent although it is known that

on average very close to two fission products are yielded per fission. In-

clusion of this knowledge makes the yields dependent and, conversely,

for independent yields this knowledge is disregarded. As a result, a re-

cent uncertainty analysis study did not include the normalization [65].

The method to find the nearest consistent covariance matrix, presented

in Publication II, can be adapted to compute the nearest covariance ma-

trix when this information is added. The method can use any of the norms

presented in Publication III.

Radioactive decay data are physical quantities such as half-lives, branch-

ing ratios and decay energies for each decay branch. These are also used

to describe spontaneous fission neutron yields, delayed neutrons and their

emission spectra. In ENDF-6 format the first two moments of the evalua-

tors’ knowledge of these quantities may be encoded but, again, the quan-

tities are assumed to be independent. The format proposes a correction

that is a special case of methods presented in Publication II and III.

8Here the term “yield” refers to the independent yields and not to the cumulative
yields, and the term “independent” is used in its statistical meaning.
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(a) The nearest positive semidefinite covariances.

(b) Eigenvalues of the covariances before and after postprocessing.

Figure 3.3. (a) Multigroup averaged and postprocessed covariances of cross sections
of 35

17Cl. (b) Eigenvalues of postprocessed (“deflated”) and original (“sym-
metrized”) covariances. The latter are presented in Fig. 3.2. Four nega-
tive eigenvalues were deflated, one of whose magnitude was large. Orig-
inal data from ENDF/B-VII.1 [18]. Figure adapted from Publication I.

3.1.8 Detecting and interpreting improper covariances of
nuclear data

Probability theory requires the covariances to be a positive operator9.

However, there are evaluations whose covariances have negative eigen-

values, which might manifest themselves as negative variances after un-

certainty propagation. Publication I proposes a quality assurance method

9The redundancy of nuclear data is described by zero eigenvalues, so that the op-
erator can not be positive. The remedy used in this work is to consider only a set
of non-redundant reactions and interpret the redundant data as being derived
from non-redundant data whenever necessary.
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(a) Heuristically characterized covariances.

Figure 3.4. Multigroup averaged relative covariances of cross sections of 94
40Zr. The

relative covariances are the absolute covariances scaled with inverses of
best-estimates. Covariances with neutron duplication are omitted due
to their small magnitude. Covariances whose absolute value is larger
than 10−2 are shown with the extreme colors. The largest covariance
is 0.4475. (a) The self-covariances, on the main block-diagonal, are the
original data. The heurestic characterization method assigns the row
sums as the cross-covariances with the total cross section. The end result
is still inconsistent covariances. (continues)

that can be used to detect negative eigenvalues in covariances of multi-

group averaged nuclear data. In Publication III a similar method is pro-

posed for energy-dependent nuclear data in the ENDF-6 format. In ad-

dition, Publications I and III present a method to deflate the detected

negative eigenvalues with minimal changes to the covariances. This is

illustrated in Figs. 3.2 and 3.3.

The ENDF-6 format requires redundant nuclear data to be consistent

with the sum rules of nuclear data. This implies, for example, that the

total cross section must be the sum of elastic and non-elastic cross section

or its partials if the non-elastic cross section is not present. Similarly,

the self-covariances of total cross section should be the sum of cross-co-

variances between total and elastic reactions, and total and non-elastic

covariances. Again, the covariance between total and non-elastic cross
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(b) The nearest more consistent covariances.

Figure 3.4. (continued) (b) The nearest more consistent covariances are consistent for
about 14 digit arithmetic. Notably the low and medium energy regions
of self-covariances of the total cross section have emerged. Original data
from ENDF/B-VII.1 [18]. Figure adapted from Publication II.

section may be replaced by its partials if the piece of covariance is not

present. However, in practice there are evaluations whose covariances

are not consistent. For these evaluations physically equivalent formula-

tions of the problem will give different answers. Publication II proposes a

quality assurance method that can be used to detect inconsistent covari-

ances of multigroup averaged nuclear data. In Publication III a similar

method is proposed for energy-dependent nuclear data in the ENDF-6 for-

mat. In addition, Publications II and III present a method to find a nearby

more proper covariances with minimal changes to the covariances. This

is illustrated in Fig. 3.4.

The ENDF-6 format allows the evaluators to specify an approximation of

the first two moments of their knowledge of nuclear data. However, the

ENDF-6 format does not require evaluators to provide the second moments,

i.e., covariances. According to the format, lack of covariances does not

imply zero uncertainty. This causes a practical problem of selecting non-

zero values that are not provided by the evaluator. The history section of
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the ENDF-6 format manual states [11]:

At the 1961 Vienna Conference on the Physics of Fast and Intermediate Reac-

tors, Ken Parker [66] indicated some of the requirements for the neutron cross

section libraries. They had to specify reaction processes available or else a zero

value cross section would automatically be assumed.

Interestingly, the last sentence describes the present issue. This issue is

considered in Publication II and illustrated in Fig. 3.4(a).

The three issues of non-positivity, inconsistency and lack of covariances

can be approached in various ways. Publications I–III provide a solution

to the issues as follows:

1. The non-zero components may be approximatively characterized by

one of the characterization methods presented in Publication II. This

step may be omitted if all covariances have been characterized by the

evaluator.

2. The resulting covariances can be checked for negative eigenvalues

and those may be deflated by the methods presented for (2a) multi-

group nuclear data in Publication I or (2b) energy-dependent nu-

clear data in Publication III. Any of the weights described in Publi-

cation III may be used in deflating the negative eigenvalues.

3. The resulting covariances can be checked for consistency with re-

spect to the sum rules of nuclear data by the method presented for

(3a) multigroup nuclear data in Publication II or (3b) energy-depen-

dent nuclear data in Publication III. For the case of inconsistent

covariances, Publications II andIII present methods to find nearby

more consistent covariances. Again, the weights described in Publi-

cation III may be used.

It is advisable to check the resulting covariances, compare them with the

originals and decide whether the resulting covariances are suitable for the

intended application. The resulting covariances can be considered to be

low-fidelity covariances, which are better than no covariances and should

be replaced by high-fidelity covariances in the future.

The methods described here will not check all necessary properties of

nuclear data covariances. They should be used as a part of a quality as-

surance program. Other necessary or useful properties are described, for

example, in Refs. [4,67].
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3.1.9 Covariances of multigroup nuclear data

There has been some confusion about the definition of covariances of multi-

group nuclear data. In the following, it is remarked that both response-

independent and response-specific covariances can be used but the sensi-

tivities that should be used in the first-order uncertainty analysis differ.

Generally, a piece of multigroup nuclear data is defined by

αi,g(β) =

∫
g w(E)αi(E;β) dE∫

g w(E) dE
, (3.1)

where the integration is carried out over the energy interval of the g’th

group, w(E) is a suitable weight function, and β contains the surrogate

quantities.

The response-independent multigroup nuclear data covariance between

i’th and j’th pieces of multigrouped nuclear data in energy groups g and

g′, respectively, is straightforwardly

Cijgg′ = E[αi,g(β)αj,g′(β) ]− E[αi,g ] E[αj,g′ ]

=

∫
g w(E)

∫
g′ Cij(E,E′)w(E′) dE′dE∫

g w(E) dE
∫
g′ w(E

′) dE′ , (3.2a)

where Cij(E,E′) denotes the covariances between i’th and j’th energy de-

pendent pieces of nuclear data. For example, NJOY [68] and PUFF-IV [69]

compute this kind of multigroup covariances. However, the covariances

contain no spectral fine-structure effects [70]. Therefore, the sensitivities

must be equal to the integral of the energy-dependent sensitivity profile

for the first-order uncertainty analysis.

The response-specific multigroup nuclear data covariances are sensitiv-

ity weighted covariances. That is, the multigroup nuclear data covariance

between i’th and j’th pieces of multigrouped nuclear data in energy groups

g and g′, respectively, for responses f and h is formally

C̃ijgg′fh =

∫
g Sf,i(E)

∫
g′ Cij(E,E′)Sh,j(E

′) dE′dE∫
g Sf,i(E) dE

∫
g′ Sh,j(E′) dE′ . (3.2b)

Here the sensitivity profiles Sf,i(E) and Sh,j(E) corresponding to the re-

sponses f and h, respectively, are evaluated at the best-estimate values.

Since the energy-dependent sensitivities are built into the covariances,

the sensitivity analysis for the first-order uncertainty analysis must be

applied to the multigroup nuclear data. Otherwise the spectral fine struc-

ture effects are counted twice.
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3.2 Models in reactor physics

3.2.1 Neutron transport

Neutron transport is a process in which neutrons propagate in a physical

system. A model of the system is defined by a geometry in which nuclide

compositions and material temperatures are presumed to be known10.

The geometry, temperature, initial compositions and certain composition

changes are considered as design parameters since the designer can easily

manipulate them.

The properties of the medium are described by effective cross sections,

which are temperature dependent. In this work, the temperature depen-

dency is not explicitly marked nor discussed further. For a recent account

on the temperature effects see, for example, Ref. [71].

The macroscopic cross section for reaction x may be written as

Σx(r̄, E, t) =
∑
i

ni(r̄, t)σi,x(E), (3.3)

where ni denotes the nuclide concentrations and σi,x the effective micro-

scopic cross section of the i’th material. The macroscopic cross section can

be interpreted as an interaction probability per path length traversed by

a neutron.

In certain reactions neutrons are emitted. The emitted neutrons can be

described by the macroscopic double differential cross section

mΣx(r̄, Ω̂ → Ω̂′, E → E′, t)

=
∑
i

ni(r̄, t)mi,x(E)σi,x(E)pi,x(Ω̂ · Ω̂′, E → E′),
(3.4)

where the “ligature” mΣx should be interpreted as a single symbol. Here

mi,x is the multiplicity of the reaction and other terms are explained in

Section 3.1.

For fission reactions the multiplicity is customarily written as ν̄, and it

is further customary to write

ν̄Σf,p(r̄, E → E′, t) =
∑
i

ni(r̄, t)χi,p(E → E′)ν̄i,p(E)σi,f(E), (3.5a)

ν̄Σi,j,f,d(r̄, E, t) = ni(r̄, t)ν̄i,j,d(E)σi,f(E), (3.5b)

10It is possible to include heat transfer, thermal-hydraulics and other phenom-
ena in the model. However, the resulting model is unnecessarily complex, and
usually more approximative models are used when several fields are considered
simultaneously.
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for prompt neutrons and neutrons in the j’th delayed group, respectively.

The energy spectra of neutrons emitted from fissions are denoted by χs.

Note that Eq. (3.5) does not define double differential cross sections.

The neutron transport phenomenon is described by the neutron trans-

port equation, which is a balance equation for the number of neutrons,

N(r̄, Ω̂, E, t) dr̄dΩ̂dE, in a volume dr̄ about r̄, traveling with a solid angle

dΩ̂ about Ω̂ within energy dE about E at time t, when neutron stream-

ing, interactions and sources are considered. However, the formulation is

usually made for the neutron angular flux that is defined as

ψ(r̄, Ω̂, E, t) = vN(r̄, Ω̂, E, t), (3.6)

where speed of a neutron, v, is defined by its kinetic energy, E. Almost

all quantities of interest in reactor physics can be derived from the scalar

neutron flux, φ, and the neutron current, J̄ . These are related to the

angular neutron flux by

φ(r̄, E, t) =

∫
4π

ψ(r̄, Ω̂, E, t) dΩ̂ and (3.7a)

J̄(r̄, E, t) =

∫
4π

Ω̂ψ(r̄, Ω̂, E, t) dΩ̂. (3.7b)

The neutron transport equation is

1

v

∂

∂t
ψ(r̄, Ω̂, E, t) + Ω̂ · ∇ψ(r̄, Ω̂, E, t) + Σt(r̄, E, t)ψ(r̄, Ω̂, E, t)

= S(r̄, Ω̂, E, t;ψ),

(3.8)

where the sources are divided into neutron emitting reactions except fis-

sion, fission and application dependent external sources as

S(r̄, Ω̂, E, t;ψ) = Sn(r̄, Ω̂, E, t;ψ) + Sf(r̄, Ω̂, E, t;ψ) + Se(r̄, Ω̂, E, t). (3.9)

With the exception of the external sources, these are explicitly

Sn =
∑
x�=f

∫
4π

∫ ∞

0
mΣx(r̄, Ω̂

′ → Ω̂, E′ → E, t)ψ(r̄, Ω̂′, E′, t) dE′dΩ̂′, (3.10a)

Sf =
1

4π

∫ ∞

0
ν̄Σf,p(r̄, E

′ → E, t)φ(r̄, E′, t) dE′

+
1

4π

∑
i,j

χi,j,d(E)λi,jCi,j(r̄, t),
(3.10b)

where the delayed neutron precursor concentrations for the j’th delayed

neutron group of the i’th material are given by

∂

∂t
Ci,j(r̄, t) =

∫ ∞

0
ν̄Σi,j,f,d(r̄, E

′, t)φ(r̄, E′, t) dE′ − λi,jCi,j(r̄, t). (3.11)

The above form of the neutron transport equation contains several minor

assumptions. For example, decay of free neutrons and neutron-neutron
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interactions are neglected, the delayed neutron precursors are assumed to

be immobile and the fission neutrons are assumed to be emitted isotrop-

ically. The first two are considered good approximations in all reactors,

the third one fails considerably only for fluid fueled reactors, and the last

one might not hold for fissions caused by relatively high-energy neutrons.

At the reactor boundary one usually considers the boundary condition

ψ(r̄, Ω̂, E, t) = 0 for Ω̂ · n̄ < 0, (3.12)

where n̄ is the outward normal vector at boundary point r̄. The boundary

condition implies that neutrons that cross the boundary will not re-enter

the reactor. Also an initial condition for the angular neutron flux must be

given.

For most applications the time-dependent transport equation is unnec-

essarily complex and the criticality equation

Ω̂ · ∇ψ(r̄, Ω̂, E) + Σt(r̄, E)ψ(r̄, Ω̂, E)

=
∑
x�=f

∫
4π

∫ ∞

0
mΣx(r̄, Ω̂

′ → Ω̂, E′ → E)ψ(r̄, Ω̂′, E′) dE′dΩ̂′

+
1

4πk

∫ ∞

0
ν̄Σf,t(r̄, E

′ → E)φ(r̄, E′) dE′

(3.13)

is solved instead. A multiplication factor k has been introduced, which

ensures that a solution exists when the physical system is not in steady

state. Physically, this can be seen as arbitrarily varying the number of

neutrons emitted from fission.

For derivations, equivalent forms and further approximations, inter-

ested readers are referred to one of the text-books [3,5,72–75].

For reference to Chapter 4 it is useful to identify model parameters,

phase space and state variables. The parameters of the model consist of

the nuclide concentrations ni(r̄, t), the temperature field T (r̄, t), the ex-

ternal sources Se(r̄, Ω̂, E, t), the microscopic cross sections σi,x(E), the en-

ergy-angle distributions pi,x(Ω̂ · Ω̂′, E → E′), including fission spectra, the

multiplicities mi,x(E), including the average numbers of neutrons emit-

ted from fission, and the decay constants λi,j . These are required for all

materials and reactions. It should be noted that parameters with depen-

dence on the position vector define the geometry of the model. The phase

space of the model is (r̄, Ω̂, E, t). The state variables of the model are the

angular neutron flux ψ(r̄, Ω̂, E, t) and the delayed neutron precursor con-

centrations Ci,j(r̄, t) for the transport equation or the multiplication factor

k for the criticality equation. The inhomogeneous sources are the external

sources.
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3.2.2 Transmutation of nuclides

Transmutation of nuclides is a process in which nuclides transform into

other nuclides through radioactive decay, and nuclear reactions, including

fission. A model of the system is defined by the scalar neutron flux and

material temperatures. With effective, temperature adjusted, cross sec-

tions these define reaction rates. It is customary to consider only a single

spatial position, so that the position vector can be dropped.

The reaction rate densities for reaction x in the i’th material are defined

as

ri,x(t) = σ̄i,x(t)φ̄(t)ni(t), (3.14)

where the effective 1-group flux, φ̄(t), is defined by
∫∞
0 φ(E, t) dE and the

effective 1-group cross section, σ̄i,x(t), by
∫∞
0 σi,x(E)φ(E, t) dE/φ̄(t).

Considering all nuclear reactions, the production of the i’th material

through them is
∑

j σ̄j→i(t)φ̄(t)nj(t) and, conversely, the destruction of the

material is
∑

j σ̄i→j(t)φ̄(t)ni(t). It should be noted that the effective trans-

mutation cross section, σ̄j→i(t), includes fission yields and other reactions

in which transmutations occur.

The decay rate of the i’th material is λini(t) and the production rate from

decay of other materials is
∑

j bj→iλjnj(t), where bj→i is the branching

ratio.

In total these give the transmutation equation
∂

∂t
ni(t) =

∑
j

σ̄j→i(t)φ̄(t)nj(t)−
∑
j

σ̄i→j(t)φ̄(t)ni(t)

+
∑
j

bj→iλjnj(t)− λini(t).
(3.15)

The equation is also called burnup equation, depletion equation, and de-

cay and transmutation equation. For a recent accurate and efficient solu-

tion method for time-independent 1-group constants, see Ref. [76], and for

using these to approximate time-dependent solutions, see Ref. [77]. Since

this is a differential equation in time, initial conditions must be provided

for the nuclide concentrations.

It is again useful to identify model parameters, phase space and state

variables. The parameters of the model consist of the temperature field

T (t), the transmutation cross sections σi→j,x(E), including fission yields,

the scalar flux with power normalization φ(E, t), the decay constants λi

and the branching ratios bj→i. These are required for all materials. The

phase space of the model is time and the state variables of the model are

the nuclide concentrations ni(t).
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4. Uncertainty analysis in reactor
physics

Some physical systems have interesting properties that can be described

by quantities of interest. Quantities of interest can be predicted by phys-

ical models that map model parameters to quantities of interest. The

quantities of interest are sometimes referred to as responses, physical

models as models, and model parameters as parameters. Both param-

eters and responses are presumed to be either physical quantities or at

least quantities that can be described as probability distributions that de-

scribe the knowledge of the quantity.

The purpose of uncertainty analysis is to quantify the level of confidence

one can have in calculated quantities of interest, that is, to quantify the

knowledge of the values of the quantities of interest. There are many

sources of uncertainty in the calculations [23]. Typically a major source of

uncertainty is the parameter uncertainty, i.e., the lack of knowledge of the

values of the quantities of interest. This is sometimes the only considered

source of uncertainty [1]. If all sources of uncertainty are accounted for,

the inverses of the standard deviations of the quantities of interest are a

measure of the prediction capability of the model [1]. A categorization of

sources of uncertainty for the quantities of interest in physical models is

presented in Section 4.1.

Uncertainty analysis quantifies uncertainties of responses. The quanti-

fied uncertainty can, for example, be used to calculate probabilities that

a quantity of interest is within a given, possibly unbounded, interval.

The probability is only rarely, if ever in practical applications, a certainty.

That is, usually uncertainty analysis can only provide evidence for a con-

clusion but not a solid proof of it. Therefore deductive reasoning can not

be used and one must settle for inductive reasoning [78].

A typical adjunct to uncertainty analysis is apportioning the uncertain-

ties in the responses to the uncertainties in the parameters [31]. This
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results in a parameter importance ranking table [23]. The table can be

used, for example, to prioritize efforts to reduce uncertainty.

For the present work the physical model is specified as follows. The

model parameters are denoted by α(x) = (α1(x), . . . , αk(x))
ᵀ ∈ Eα, where

Eα is a normed linear space. The model parameters may depend on the n-

dimensional phase space, which is denoted by x = (x1, . . . , xn)
ᵀ ∈ Ω ⊂ R

n.

The state variables, u(x) = (u1(x), . . . , um(x))ᵀ ∈ Hu, belong to a Hilbert

space with the inner product 〈 · , · 〉u and describe the internal state of the

model around each point of phase space and depend on the parameters via

N(u(x), α(x)) = Q(α(x)), x ∈ Ω, (4.1a)

where the operator Q(α(x)) = (Q1(α(x)), . . . , Qm(α(x)))ᵀ contains the in-

homogeneous source terms that operate on the parameters and belongs to

a normed linear space EQ, and the operator N(u(x), α(x)) = (N(u(x), α(x)),

. . . , N(u(x), α(x)))ᵀ belongs to a normed linear space EN and describes

other than inhomogeneous terms [1]. The domains of both operators may

be restricted when necessary. When Q is zero, the equation can be an

eigenvalue problem, for which the operator N is singular [79]. If Eq. (4.1a)

contains differential operators, then suitable boundary conditions must be

provided as

B(u(x), α(x)) = A(α(x)), x ∈ ∂Ω, (4.1b)

where ∂Ω is the boundary of Ω and A and B are non-linear operators [1].

The boundary is presumed to be sufficiently smooth. It is assumed that

the model has a unique model solution, i.e., unique u(x) for given model

parameters. Therefore, the state variables can alternatively be seen to

depend on the model parameters, i.e., u(α(x)) = (u1(α(x)), . . . , um(α(x)))ᵀ,

since the parameters and Eq. (4.1) are enough to define them.

The model responses, R = (R1, . . . , Rl)
ᵀ are usually formulated as linear

or non-linear functions or operators of the state variables and parameters,

i.e., R : DR ⊂ Hu×Eα → ER, where ER is a normed linear space [1]. In this

work, the responses are assumed to be functionals, that is, the space ER is

assumed to be the space of real numbers. More general responses can be

considered [1]. Formally, the responses can be seen to depend only on the

parameters, partially implicitly, since the state variables depend on the

parameters.

A rather broad class of physical models can be described in this form.

For example, the energy-dependent criticality equation, transmutation

equation and their various approximations can be described in the form
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of Eq. (4.1). The considered responses might be chosen to be, for exam-

ple, relevant reaction rates, ratios of reaction rates or nuclide concentra-

tions [79].

Requirements for uncertainty analysis in reactor physics are usually

characterized by a large number of model parameters, models that are

computationally relatively expensive to evaluate, and a small number of

model responses. The methods of uncertainty analysis can be divided into

two categories: deterministic and statistical. The latter are also referred

to as probabilistic or stochastic methods. Although neither category excels

at all purposes, both can be and have been used in practical uncertainty

analysis in reactor physics [80]. Sections 4.2 and 4.3 provide an overview

of the most common and simplest deterministic and statistical methods

in uncertainty analysis, respectively. There are several variations to each

method and hence only salient features are presented. Interested readers

are referred to the bibliography for further details.

4.1 Sources of uncertainty

The sources of uncertainty can be categorized in a variety of ways. A cate-

gorization is presented in Table 4.1, which is not fully compatible with the

categorizations in Refs. [1,7,11,13,23,28,47,49,80,81]. The actual catego-

rization is less important than consideration of all sources of uncertainty,

for which categorization is a conceptual aid.

Ideally, the physical model contains only system uncertainty, model un-

certainty and parameter uncertainty. The physical model is presumably

discretized into a computational model that can be used to compute the

quantities of interest using a digital computer. The discretization causes

discretization uncertainty. However, sometimes the ideal is not achieved

and physical approximations need to be applied to a partially discretized

system. In such a case, the categorization is not as important as estimat-

ing the uncertainty and including it in a category. The relative magni-

tudes of most sources of uncertainty were quantified in Publication V for

two cases.

System uncertainty is inherent to the physical system or its boundary

and is aleatory in nature [47]. System uncertainty does not include un-

certainty from totally unpredictable phenomena but only uncertainty due

to phenomena that have statistical regularity [1]. All systems do not have

inherent uncertainty. System uncertainty can not be reduced, since it is
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Table 4.1. Sources of uncertainty in modeling of physical systems.

Category Cause of uncertainty

System uncertainty The physical system

Model uncertainty Idealized description of the system

Parameter uncertainty Imperfect knowledge of the values of

the model parameters

Discretization uncertainty Replacement of continuous parts of

the model and continuous parameters

by discrete approximations

inherent to the system being modeled – the model should reflect the fact

and either produce statistically varying results or present the responses

as distributions. In typical applications of reactor physics system uncer-

tainty is not a large component of uncertainty.

Model uncertainty is caused by lack of knowledge of physical laws or

a choice to exclude known physics from the model, perhaps due to their

complexity. Irrespective of the complexity of the model, it is always an ide-

alization of the system and can not be exact [82]. Uncertainty caused by

model uncertainty can be estimated if a more accurate model is available

by comparing results of the two models. The uncertainty can also be re-

duced by using the more accurate model. If the model is already the most

faithful to known physics, model validation is necessary to estimate uncer-

tainty in the model [23]. In such a case model uncertainty can be reduced

only by improvements in known physics. In reactor physics model uncer-

tainties include ignoring neutron-neutron interaction, handling of unre-

solved resonances and many approximations in the deterministic codes.

In typical applications of reactor physics model uncertainty is comparable

to parameter uncertainty in deterministic models but much smaller than

parameter uncertainty in stochastic models [22,83].

Parameter uncertainty is caused by lack of knowledge of the values of

the model parameters. It can only be reduced by increasing the knowledge

of the values by, for example, performing new measurements using mea-

surement instruments of a new kind, by incorporating new theoretical

information or sometimes by a more refined analysis of existing data [11].

For nuclear data, these actions are usually more expensive than reduc-

tion of other sources of uncertainty, and hence it should be the dominat-

ing source of uncertainty. In typical models in reactor physics parameters
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include geometry, composition and nuclear data. Estimating the uncer-

tainty caused by parameter uncertainty is the subject of the upcoming

sections.

World view uncertainty is a part of parameter uncertainty. It is caused

by incomplete information exchange, due to which parameter uncertain-

ties are estimated without complete information. It can be crudely mea-

sured by comparing results gained by using different world views. In

Publication IV the main differences in world views of three nuclear data

libraries for a pressurized water reactor application were identified.

Discretization uncertainty is caused by replacing continuous parts of the

model by their discrete counterparts. For example, differential equations

might be replaced by finite difference equations. Consistent and stable

discretizations converge to the non-discretized solution in the limit of van-

ishing discretization [75]. For such discretizations, the uncertainty can

be practically estimated using engineering convergence tests. Similarly,

such discretization uncertainty can be reduced to be considerably smaller

than the dominating source of uncertainty by adjusting the discretiza-

tion parameters. Examples in reactor physics include time discretization

of transmutation equations and linearization of interpolation of nuclear

data. Alas, in reactor physics there are deterministic models that are not

consistent. For these other ways to estimate and reduce uncertainty are

needed. Examples are certain implementations of nodal diffusion meth-

ods in hexagonal geometries [84].

Statistical uncertainty is a part of discretization uncertainty. It is

present in stochastic models and is caused by finite sample size. Its es-

timation using statistical inference and reduction by increasing sample

size is straightforward. Therefore it is not a major source of uncertainty

even in reactor physics applications.

Numerical uncertainty is a part of discretization uncertainty. It occurs

because of replacement of real numbers by a finite dimensional approx-

imation, typically by floating point numbers. Its magnitude can be esti-

mated by rounding error analysis11, running error analysis or replacing

real numbers with arbitrary precision numbers [85, 86]. The last method

can also be used to reduce the uncertainty. In typical applications of reac-

tor physics numerical uncertainty is not a major source of uncertainty.

Sometimes user effect is considered as a source of uncertainty, for ex-

11In this paragraph “error” is part of customary names of techniques, and does
not mean a blunder.
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ample in Ref. [7]. User effect occurs, e.g., because different users make

different assumptions about phenomena to model or choose different sub-

models. Hence the user effect arises because different models are used

without estimating model uncertainty. In this work, any user effect is

considered an error rather than a source of uncertainty.

4.2 Deterministic uncertainty analysis

In deterministic uncertainty analysis, the first few moments of the distri-

bution that describes the knowledge of the values of the model responses

are estimated. The distribution is not fully characterized since the process

does not provide enough information to define a distribution. Remedies

require subjective decisions.

The standard approach is to disregard all other information except the

first few moments that are estimated. Subsequently, the distribution is

characterized using the principle of maximum entropy. Alternatively, if

the first two moments exist, have been estimated, and one is interested in

finding out upper bounds of probabilities that the responses are in certain

intervals, one can use the inequality,

P[ |Ri −mean(Ri)| ≥ k std(Ri ) ] ≤ 1

k2

for k > 0 and i = 1, . . . , l,

(4.2)

which gives upper bounds for probabilities that the values of the responses

are far from the mean values [87]. The estimate is much more conserva-

tive than assuming a normal distribution [38]. However, the estimate

might be too conservative for practical applications. The inequality has

several extensions, see e.g. Refs. [53, 88–91], some of which are sharper

but require further assumptions and some of whose formulation might be

more useful in specific applications.

In principle, the first two moments, assuming their existence, can be

calculated from

mean(R) = E[R(α(x)) ] ∈ R
l and (4.3a)

cov(R,R) = E[R(α(x))R(α(x′))ᵀ ]

− E[R(α(x)) ] E[R(α(x′))ᵀ ] ∈ R
l×l,

(4.3b)

where the implicit form of the responses is used and the expectations are

calculated over the knowledge of the values of the parameters. However,

in practice these can be evaluated only approximatively by using the first-

order uncertainty analysis, in which the responses are linearized with
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respect to the parameters. The use of higher-order uncertainty analysis

has not proven to be feasible, as discussed later in this section.

The main deficiency of the first-order uncertainty analysis is its inability

to account for non-linearities [30,49]. Whether non-linearities are impor-

tant or not depends on the details of the model. As a rule of thumb, small

uncertainties in the parameters, std(α(x)) 
 mean(α(x)), might be well

enough described by linearization, but if this is not true the results are

likely to be unacceptably biased [30]. Hence caution must be exercised.

However, the first-order uncertainty analysis can be applied to models

with a large number of parameters [23]. It is transparent in propaga-

tion of uncertainties to the responses [30]. A consequence of this is that

apportioning the uncertainties in the responses to the uncertainties in

the parameters, i.e., the construction of a parameter importance ranking

table, is straightforward [23,92]. The method is also quite fast if the sen-

sitivities can be computed efficiently [23].

4.2.1 The first-order uncertainty analysis

In the first-order uncertainty analysis the implicit form of the responses

is linearized with respect to the model parameters at the best-estimate

values of the parameters. For this, it is convenient to restrict the space

of parameters, Eα, to be a Hilbert space, which will be denoted by Hα. Its

inner product will be denoted by 〈 · , · 〉α.

The linearized responses are then

R(α(x)) = R(E[α(x) ]) + 〈S(E[α(x) ]) , α(x)− E[α(x) ] 〉α
+O(‖α(x)− E[α(x) ]‖2α),

(4.4)

where the inner products are taken response-wise, and the sensitivities

S(E[α(x) ]) contain concatenated sensitivities for each response, that is,

S(E[α(x) ]) = (S1(E[α(x) ]), . . . , Sl(E[α(x) ]))
ᵀ. The response specific sen-

sitivities Si(E[α(x) ]) ∈ Hα, contain partial functional derivatives of the

responses with respect to parameter variations and are evaluated at the

best-estimate values of the parameters [23]. The sensitivities contain

both direct effects, which occur directly due to parameter variations, and

indirect effects, which occur indirectly due to variations in the state vari-

ables due to variations in the parameters. The linearization is accurate

up to the second-order in parameters [1]. When the linearization is ap-

plied to the fully discretized model, Hα is R
k and the sensitivities reduce

to a Jacobian, which contains the response specific sensitivities.
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Using the linearized responses the first two moments of the knowledge

of the values of the responses are estimated as

mean(R) = R(E[α(x) ]) +O(‖α(x)− E[α(x) ]‖2α) and (4.5a)

cov(R,R) = 〈S(E[α(x) ]) , 〈 cov(α(x), α(x′)) , S(E[α(x) ])ᵀ 〉′α 〉α
+O(‖α(x)− E[α(x) ]‖3α),

(4.5b)

where the primed inner product refers to the primed phase space. With

the exception of sensitivities, the equations are readily evaluable at rela-

tively low computational cost.

The interpretation of Eq. (4.5a) is often overlooked: the best-estimate

of the responses is only approximatively the model evaluated at the best-

estimate parameters, unless the model is linear. The best-estimate of

the responses should be corrected by second-order sensitivities applied

to the covariances. Had the linearization not been performed at the best-

estimate values, the equation for the mean would have been accurate only

up to the first-order and a linear correction would have been needed for

the present accuracy. Similarly, a third-order correction should be applied

to the covariances.

4.2.2 The first-order sensitivity analysis

The objective of local sensitivity analysis12 is to quantify the effects of pa-

rameter variations on the responses [1]. The first-order sensitivity anal-

ysis, or linear perturbation theory, aims to compute the first-order sensi-

tivities accurately and efficiently [1]. In reactor physics various forms of

it are known as classical perturbation theory and generalized perturba-

tion theory [93, 94]. Local sensitivities, or sensitivities, can be computed

exactly only by deterministic methods [80]. These methods involve some

kind of differentiation.

In general, the differentiation and discretization of the model do not

commute, i.e., their order of application matters [23]. It is possible to

compute the sensitivities to certain discretization parameters, if the sys-

tem is first discretized and the system is differentiated regarding the dis-

cretization parameters as model parameters [1]. These can be useful in

estimating the discretization uncertainty. However, the two sets of equa-

tions are not consistent if they are not identical in the limit of vanishing

12It should be mentioned that in statistical uncertainty analysis the word “sen-
sitivity analysis” is used to mean apportioning the uncertainty in the individual
responses to the uncertainty in the individual parameters [31].
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discretization parameters. In these cases it is advisable to first perform

the differentiation and then discretize the resulting equations [1].

The model recalculation method is perhaps the most straightforward

method to estimate the sensitivities but can only be applied to the com-

putational models [23]. In the method, the model is first evaluated once

at the best-estimate values of the parameters. Subsequently, a model pa-

rameter is varied by a smallish fraction of its standard deviation and the

model is re-evaluated. Suitable fractions are typically between 0.1% and

10% but need to be determined case-by-case. The varied parameter is

then returned to its best-estimate value and procedure is repeated for

every model parameter. The sensitivities are then estimated by using a

finite difference approximation.

The estimated sensitivities contain both direct and indirect effects since

the model is re-evaluated after each variation. The method is concep-

tually simple, but it is not completely accurate due to the use of finite

differences, and may fail if the parameter variations are selected to be too

small, due to finite numerical precision, or too large, due to non-lineari-

ties. The number of required model evaluations required grows linearly

with the number of parameters.

The adjoint-based sensitivity analysis methods are efficient but reason-

ably complicated methods to evaluate sensitivities [1, 79]. The methods

can be applied to the physical model or to the computational model. The

methods are based in a variation hα(x) in the parameters that causes a

variation hu(x) in the state variables, both of which cause variations in

the responses. Dropping the phase-space argument for convenience and

using the explicit form of the responses, the variation at the best-estimate

values is

δR(E[u ],E[α ];hu, hα) = R′
α(E[u ],E[α ])hα +R′

u(E[u ],E[α ])hu, (4.6)

where the best-estimate state variables are computed by solving Eq. (4.1)

for the best-estimate parameter values, and R′
α and R′

u denote the partial

functional derivatives with respect to α and u, respectively [1]. Assum-

ing that the responses are suitably smooth the variation in the responses

will be linear in both the variations in the parameters and the state vari-

ables [1].

To construct the linear term in Eq. (4.4) a mapping between variations

in the state variables and parameters is needed. For this, the methods

need an adjoint model in addition to the usual (forward) model. Assuming

that EQ is a Hilbert space with the inner product 〈 · , · 〉Q, the adjoint

43



Uncertainty analysis in reactor physics

model for the i’th response is formally

N †(u†i ,E[α ]) = ∇uRi(E[u ],E[α ]), x ∈ Ω, (4.7a)

B†(u†i ,E[α ]) = A†(E[α ]), x ∈ ∂Ω, (4.7b)

where R′
uhu = 〈∇uRi, hu 〉u, u†i (x) is the adjoint state of the i’th response,

and the dagger indicates adjoint operators for which the boundary con-

ditions must be chosen suitably [1]. Interestingly, certain adjoint equa-

tions can be derived purely from physical considerations [95]. The adjoint

model needs to be solved once for each response at the best-estimate val-

ues, after which the linear term in Eq. (4.4) can be formed from

〈S(E[α(x) ]), hα 〉α = R′
α(E[u ],E[α ])hα

+ 〈u†i (x) , Q′(E[α ])hα −N ′
α(E[u ],E[α ])hα 〉Q

− P (hα, u
†
i (x),E[α ])

(4.8)

where Q′ is the functional derivative of the inhomogeneous sources, N ′
α is

the partial functional derivative of N with respect to model parameters,

and P contains certain boundary terms [1]. All the terms are linear in hα

so that the sensitivities can be computed [1].

The computational cost of the solution of the adjoint model is compa-

rable to the cost of solution of the original model. Therefore the adjoint-

based approach is advantageous when there are more parameters than

responses [92]. However, its implementation to existing computational

models might require considerable development work [1]. For details, see

e.g. Refs. [1, 79, 80, 95]. In reactor physics, most sensitivities are com-

puted with respect to nuclear data, but also the composition of the reactor

has been considered in the criticality equation, see e.g. Refs. [70,96], and

Publication V, and in the transmutation equation, see e.g. Ref. [97]. In

addition, sensitivities with respect to the geometry of the reactor have

been considered [96,98].

It should be mentioned that local first-order sensitivities have other uses

than sensitivity analysis [23]. For example, the sensitivities can be used

to determine effects of parameter variations on responses, which allows

optimization of the system by changing the design parameters. The sen-

sitivities can lead to greater understanding of the system by highlighting

important data, and to reduced parameter models by allowing elimina-

tion of less important data. The sensitivities can also be used to prioritize

the introduction of parameter uncertainties, if some parameters have no

uncertainty estimates.
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4.2.3 Higher-order uncertainty analysis

There are no theoretical reasons not to include second and higher-order

terms in the series expansion of responses with respect to parameters in

Eq. (4.4). However, in general there are practical reasons for not doing so

in reactor physics.

The resulting equations for second- and higher-order deterministic un-

certainty analysis require knowledge of the third and higher-order mo-

ments of the distribution that describes the knowledge of the values of

the parameters. These are generally not available for two reasons. Firstly,

the storage requirements of subsequent moments grow, literally, exponen-

tially. Therefore only a few more moments could, in theory, be stored.

Secondly, the form of the distribution is not set in the ENDF-6 format [11].

Otherwise higher-order moments could, in some situations, be constructed

from the second-order data. However, it has been proposed that the form

of the distribution should be set as either normal or log-normal, after

which the higher-order moments would be known [46,99].

The resulting equations for second- and higher-order deterministic un-

certainty analysis require computation of the second and higher-order

sensitivities. Even the adjoint-based sensitivity analysis does not help

here, since the computation of second-order sensitivities requires as many

adjoint model evaluations as there are parameters [1]. For few-parameter

models this might be a feasible approach, but not in transmutation and

lattice calculations in reactor physics.

Therefore, deterministic methods are not suitable for characterization of

the full distribution that describes the knowledge of the values of the re-

sponses. Their strength is in order-of-magnitude estimates of uncertainty

especially for computing resource intensive models with a large number

of parameters or relevant responses, and in situations where the param-

eters are well known or the responses have mostly linear dependence for

the least known parameters.

4.3 Statistical uncertainty analysis

In statistical uncertainty analysis the distribution of the knowledge of

the values of the model responses is estimated by repeatedly evaluating

the model with varied model parameters, and computing responses us-

ing their explicit forms. Even in this way the distribution will not be
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fully characterized, since only a finite number of re-evaluations can be

performed. However, with large enough computational resources the dis-

tribution can be characterized as precisely as necessary.

In the following it is assumed that statistical uncertainty analysis is

applied to the computational model. The parameters will then belong to

R
k, where k will be large in reactor physics applications. This might cause

problems apportioning uncertainty in the responses to the uncertainty

in the parameters. The number of parameters can be reduced if their

contribution to uncertainty is ignored.

All statistical uncertainty analysis methods generate a sample from the

distributions that describe the knowledge of the model parameters. A

single set of values for the model parameters is called a realization. A

sample of s realizations is

αi = (αi
1), . . . , α

i
k)

ᵀ ∈ R
k, i = 1, . . . , s, (4.9)

where the superscript i refers to the index of the realization. For sam-

ple size selection see, for example, Ref. [100]. There are several sampling

techniques that can be used to obtain a sample. The model is evaluated

using the values of each realization, so that the corresponding set of state

variables {ui}si=1 is obtained. This is usually the most computationally ex-

pensive phase – especially in reactor physics. The responses {R(ui, αi)}si=1

are computed after model evaluations. The method can account for all

non-linearities, since the method is re-evaluated for all realizations [23].

Assuming that the sampling technique is not biased, uncertainty analy-

sis can be readily performed using the set of computed responses: for each

response these form a piecewise constant estimate of the cumulative dis-

tribution function – this provides an estimate of the complete information

of the marginal probability distributions [31]. Similarly, the computed

responses form an estimate of the multidimensional cumulative distribu-

tion function [31]. Customary indicators of the marginal distribution are

sample means and variances, which should only be reported if the distri-

bution is well described by its first two moments [23]. Alternatively, if one

is interested in finding upper bounds of probabilities that the responses

are in certain intervals, one can use inequalities similar to Eq. (4.2), as

long as the chosen sampling technique allows [101,102].

The main deficiency of the statistical uncertainty analysis is the inabil-

ity to handle very large numbers of parameters and requirement of exten-

sive computational resources for models that are computationally expen-

sive to evaluate [30]. The computational requirements are even larger if
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near zero or near one probabilities need to be estimated. However, spe-

cial sampling techniques are available for these cases [31]. In addition,

the statistical nature of the method implies lack of unique results and, for

example, exact sensitivities [1,30].

However, statistical uncertainty analyses are impervious to non-linear

effects and can, in principle, be applied to all models [30]. The method

is conceptually straightforward and requires relatively little development

work [1,31]. In reactor physics applications statistical uncertainty analy-

sis methods have been especially applied to the transmutation equation,

e.g. Ref. [103] but also to the criticality equation, e.g. Ref. [27].

4.3.1 Realizations of parameters

Realizations of single parameters are straightforward to obtain as long as

a supply of random numbers or pseudorandom numbers from the uniform

distribution on the unit interval is available.

Let α denote a parameter whose cumulative distribution function is

F (b). This is equal to the probability that the value of the parameter

is less than b, i.e., F (b) = P[−∞ ≤ α̂ ≤ b ] =
∫ b
−∞ p(α) dα, and hence

the range of the cumulative distribution function is the unit interval. In

inverse transform sampling a random number γ from the uniform distri-

bution on the unit interval is realized. The realization is mapped through

the inverse of cumulative distribution function, so that F−1(γ) becomes

the realization of the parameter. In the cases when the inversion can

not be performed analytically, other means such as the rejection sampling

method can be used [104]. There are specialized methods for the certain

common distributions, see, for example, Ref. [105].

The procedure can be generalized for finite numbers of independent pa-

rameters by applying it separately to each parameter. Obtaining realiza-

tions of dependent parameters is less straightforward.

Diagonalization can be used to obtain realizations of dependent param-

eters if the multidimensional distribution is a normal distribution. For

other distributions the method is approximative. The multidimensional

normal distribution of the parameters α = (α1, . . . , αk)
ᵀ is fully charac-

terized by its mean mean(α) ∈ R
k and covariance cov(α, α) ∈ R

k×k. The

covariance matrix can be diagonalized as

cov(α, α) = Q cov(β, β)Qᵀ, (4.10)

where Q is an orthogonal matrix and cov(β, β) is a diagonal covariance
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matrix for a new set of parameters β = (β1, . . . , βk). The new parameters

are linear combinations of the original variables, i.e., β = Qᵀα and vice-

versa, i.e,

α = Qβ. (4.11)

Since the new parameters are jointly normal and uncorrelated, they are

independent [106]. Therefore, the new parameters can be sampled one-

by-one using the inverse transform sampling, and their realizations can

be transformed into the realizations of the original parameters by using

Eq. (4.11). The procedure can be applied to any distribution but for non-

normal distributions it preserves only the first two moments of the distri-

bution [49].

Other approaches to obtain realizations from dependent parameters in-

clude the Metropolis-Hastings algorithm [107, 108]. The algorithm re-

quires some development work and is not capable of handling many de-

pendent parameters in reasonable computation times [49]. An interesting

recent method is correlated sampling, which can be used to sample corre-

lated parameters whose distributions are, in principle, arbitrary, and, in

practice, normal or log-normal [109].

4.3.2 Sampling techniques

Arguably the simplest sampling technique is the simple random sam-

pling, in which each realization is generated without considering the other

realizations in the sample [27, 31]. Since the realizations are indepen-

dently chosen, the realizations can be generated at will and sample size

does not have to be set a priori. The technique produces unbiased es-

timates from which uncertainty analysis can be readily performed [31].

Any method can be used to obtain the realizations of dependent parame-

ters, if necessary. However, the realizations are not guaranteed to cover

the space of parameters to any extent: subsets with low probability and

extreme values of the responses are likely to be missed [31].

A popular sampling technique is the Latin hypercube sampling [110,

111]. The technique can only be applied to independent parameters, which

restricts the available methods to handle dependent parameters. The

technique generates a predetermined number of realizations, which form

the sample. That is, the sample size must be decided before the sample

generation. To generate a sample of s realizations, as in Eq. (4.9), the dis-

tributions of each of the k parameters are divided into s disjoint intervals
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of equal probability. For each parameter and interval a value is selected.

Hence, there is a pool of s values for each parameter. A realization is then

constructed by drawing a value from the pools for each parameter. The

value is not returned to the pool. Additional realizations are constructed

so that s realizations are constructed, at which point the pools are empty.

The technique guarantees that extreme values of each parameter are in-

cluded in the realizations although combinations that produce extreme

values for the responses might still be missed. Amazingly, the technique

provides unbiased estimates for the cumulative distribution function [31].

The technique might be usable for correlated parameters at the expense

of somewhat biased results [112].

For comparison of the described sampling techniques in reactor physics

see, for example, Ref. [27]. There are also other sampling techniques,

such as stratified random sampling, which is useful if very high or very

low quantiles of the distribution that describes the knowledge of the re-

sponses need to be estimated but it requires, sometimes significant, extra

development work [23]. For more sampling techniques, see, for example,

Ref. [31].

4.3.3 Sensitivity analysis

The objective of the sensitivity analysis13 is to study how the uncertainty

in the individual responses can be apportioned to uncertainties in the in-

dividual parameters [31]. This is not straightforward for non-linear mod-

els. In the following a large enough sample size is assumed.

A simple way to perform sensitivity analysis is to make scatter plots of

the pairs (αi
n, Rm(αi)), where the implicit form of the responses is used

for convenience [23]. However, if the model consists of more than a mod-

est number of parameters and responses, the number of plots becomes

impractical.

Another method is linear regression analysis, in which a linear rela-

tionship between the parameters and the responses is fitted. However,

the fitting requires a larger sample size than the number of parameters,

and if the parameters are strongly correlated the fit might produce unsta-

ble regression coefficients – diagonalization is advised to transform the

strongly correlated parameters into independent ones [23]. If the linear

13It should be mentioned that in deterministic uncertainty analysis the word
“sensitivity analysis” is used to mean quantifying the effects of parameter varia-
tions on the responses [1].
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model does not adequately describe the results, a more general regression

model can be used although its interpretation might not be straightfor-

ward.

Variance decomposition methods apportion the variance of the response

to the variances of the parameters and their second and higher-order in-

teractions [113]. The method requires independent parameters, and con-

tributions of the interactions are computationally demanding to evaluate

especially for a large number of parameters [31]. However, the method

accounts for the non-linear effects [31]. The second-order interactions

have been evaluated, e.g., for a fuel performance simulation with a modest

number of parameters [114].

The strengths of statistical uncertainty and sensitivity analysis lie in

complex models with non-linear uncertainty contributions and relatively

fast-to-evaluate models. Sensitivity analysis is the most practical for

quite a small number of parameters. For description of further sensitivity

analysis methods, see, for example, Refs. [23,31,80].
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5. Summaries of the publications

This chapter summarizes the Publications of this Thesis and discusses

their theoretical and practical implications.

5.1 Publication I: Computing Positive Semidefinite Multigroup
Nuclear Data Covariances

In Publication I a novel application of a method to compute the nearest

positive semidefinite matrices is proposed: the method should be applied

to all covariance matrices of multigroup nuclear data. This ensures, under

exact arithmetic, that the covariance matrices will be positive semidefi-

nite, that is, positive definite except for the description of redundancies.

Under exact arithmetic the method has several good properties: It does

not modify positive semidefinite matrices, and can, therefore, be applied

to proper covariance matrices. It preserves eigenvectors whose eigenval-

ues are not negative, and consequently it preserves the sum rules that

describe redundancies in the nuclear data. The method will never de-

crease variances and therefore, conservatively, never reduce propagated

uncertainties.

Under finite precision arithmetic the method is nearly as good as in ex-

act arithmetic: positive semidefinite matrices are not modified. The neg-

ative eigenvalues are deflated, except for tiny negative eigenvalues that

arise in extreme situations due to round-off errors. The sum rules are

preserved in typical cases for spectral yields but not certainly for other

types of nuclear data such as cross sections. Surprisingly, the variances

are never decreased even with finite precision arithmetic. These results

are both theoretical and seen in the practical examples. The excellent nu-

merical properties are largely due to the excellent stability of eigenvalues

of symmetric matrices. The method is illustrated in Figs. 3.2 and 3.3.
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The covariance matrices of nuclear data are block matrices, whose sub-

matrices are self-covariance matrices of individual quantities or cross-co-

variance matrices of two such quantities. For example, Fig. 3.4 illustrates

these blocks. The sub-matrices are typically loosely connected, which can

be exploited in computations by finding connected components of the par-

titioned covariance matrix. However, the method can be applied to any

matrix, and perhaps more importantly, to any covariance matrix – what-

ever quantities it describes.

Only the Frobenius norm is considered in Publication I but it is sug-

gested that other norms could be used. In Publication III, the class of

weighted Frobenius norms is considered.

The method, when used as a post-processing tool in nuclear data pro-

cessing codes, can be used as a quality assurance method. To facilitate

this, a practical implementation is described in detail. However, large

negative eigenvalues, compared to the largest positive eigenvalue, should

not be deflated silently since they indicate errors in the original evalua-

tion or the processing codes.

5.2 Publication II: Computing More Consistent Multigroup Nuclear
Data Covariances

In Publication II, a novel method to find the nearest covariance matrices

with given null vectors is proposed. It is also proposed that the method

should be applied to find the nearest consistent covariance matrices of

multigroup nuclear data with respect to their sum rules. This ensures,

under exact arithmetic, that the covariance matrices satisfy the sum rules

of nuclear data. Even under exact arithmetic the method is not completely

satisfactory: it modifies eigenvectors that are not consistent with the sum

rules, and therefore can reduce the variances and propagated uncertain-

ties. In fact, the method will never increase variances. The method is

illustrated in Fig. 3.4.

Under finite precision arithmetic the method modifies consistent covari-

ance matrices, and therefore should not be applied to them. Therefore,

Publication II presents a method to detect inconsistent covariance matri-

ces. The given consistency criterion is strict enough for practical purposes

but can be made even stricter. However, the method is numerically norm-

wise backwards stable, which implies that large components are com-

puted correctly but can not guarantee that small components would be
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computed to high relative precision. This is also seen in the practical ex-

amples. Hence the title claims “more consistent” and not “consistent”.

In Publication II, the interpretation of partially specified inconsistent

covariances of nuclear data is discussed. Two characterization methods to

interpret inconsistent covariance matrices are considered. A third char-

acterization method is described. None of them is adequate in every sit-

uation, which means that the choice of interpretation should not be built

into processing codes but left to the user. The heuristic characterization

method is illustrated in Fig. 3.4.

The method can be applied to any symmetric matrix with given null

vectors. For most of the sum rules of nuclear data there is a special band

structure in the null vectors, which could be exploited. In Publication II

this is left as future work.

Only the Frobenius norm is considered in Publication II but it is sug-

gested that other norms could be used. In Publication III the class of

weighted Frobenius norms is considered.

The methods to detect inconsistent covariance matrices and find the

nearest consistent covariance matrices can be used as a part of a quality

assurance program. To facilitate this, a practical implementation is de-

scribed in detail. However, large inconsistencies should not be corrected

silently, since they indicate errors in the original evaluation or the pro-

cessing codes.

5.3 Publication III: Computing More Proper Covariances of Energy
Dependent Nuclear Data

Publication III is a generalization of Publications I and II for covariances

of energy-dependent nuclear data, for which conditions for positivity and

consistency with respect to the sum rules of nuclear data are presented.

Sufficient and necessary conditions for positivity and consistency with re-

spect to the sum rules of nuclear data are presented for covariances in the

ENDF-6 format. The ENDF-6 format covariances are of finite rank, and the

methods to detect improper covariance matrices in anterior Publications

can be used with reinterpretation.

The nearest positive covariances can be found in certain typical situa-

tions by reinterpreting the method in Publication I. However, in typical

situations the nearest consistent covariances can not be represented in

the ENDF-6 format, so that reinterpreting the method in Publication II
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yields only nearby covariances. The issues with precision of the method

to find the nearest consistent covariances still stand. Therefore, Publica-

tion III settles for offering nearby more proper covariances and not the

nearest proper covariances.

In Publication III the class of weighted Frobenius norms is considered

and several different practical weights are considered. Examples demon-

strate that norms that are scale-free in at least one sense have good

properties for larger changes but not as good numerical properties as un-

weighted norms. The user of these methods should judge which norm, if

any, to use case-by-case.

The methods to detect improper covariances can be used by the evalu-

ators to detect blunders. The methods to remove improper parts can be

used by the users of evaluations, if re-evaluations are not feasible. Neces-

sary modifications to the earlier methods are described.

5.4 Publication IV: Survey of prediction capabilities of three
nuclear data libraries for a PWR application

Publication IV is an application of uncertainty analysis to pressurized

water reactors (PWRs). The emphasis is in determining world view un-

certainty for three nuclear data libraries ENDF/B-VII.1, JEFF-3.2, and

JENDL-4.0u for the application of generating two-group homogenized as-

sembly constants for a steady state diffusion model for PWRs. Fresh ura-

nium and mixed oxide assemblies are taken to represent PWRs.

The first-order sensitivity and uncertainty analysis is applied since its

linearity allows straightforward apportioning the uncertainty of the re-

sponses to uncertainties of the nuclear data. However, the method is

indirect and approximative. Significant contributors to the variances of

the responses are identified, and the contributions are compared between

the nuclear data libraries to identify large differences in contributions.

Looking at the uncertainty estimates of nuclear data, there are evident

differences in a few significant cases.

Between ENDF/B-VII.1 and JENDL-4.0u order-of-magnitude differences

in variances are found above about 1MeV for the effective scattering cross

section14 of 238U, on all relevant energies for radiative capture of 240Pu

14The effective scattering cross section is specific to CASMO and defined as the
sum of elastic, inelastic and neutron duplication cross sections. However, the
neutron duplication cross sections are added only to certain nuclide specific en-
ergy regions.
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and below 1 eV for radiative capture of 241Pu. If the evaluations are not

in error, nuclear data community does not agree on how well the nuclear

data are known in these cases.

Another contribution is the enumeration of the status of uncertainty

quantification in the libraries. The uncertainty estimates in ENDF/B-VII.1

and JENDL-4.0u contain uncertainty estimates for all fuel nuclides, while

JEFF-3.2 only for three out of eight. However, JEFF-3.2 contains the

largest number of structural materials with uncertainty estimates.

5.5 Publication V: Uncertainty analysis of infinite homogeneous
lead and sodium cooled fast reactors at beginning of life

Publication V is an application of first-order uncertainty analysis to lead

and sodium cooled fast reactors. Fast reactors are of interest because

they use uranium resources more efficiently than thermal reactors, and

thereby allow a longer use of uranium and production of less minor ac-

tinides. Fast reactors also suffer from higher radiation damage, which

are mainly due to fast neutrons, and nuclear data are less well known in

the relevant energy range of fast reactors. In addition, the magnitudes of

different sources of uncertainty are estimated.

In Publication V, the ratio of generated fuel to spent fuel, i.e., breeding

ratio, the ratio of damage energy deposition to heat deposition and the

ratio of 241Am transmutation to heat deposition are estimated using the

first-order sensitivity and uncertainty analysis. A reactor that can pro-

duce more fuel than it consumes, i.e., the breeding ratio is more than one,

is a breeder. The results show that it is unknown whether either of the re-

actors would be breeders or not, since their breeding ratios are 1.06± 0.07

and 0.98± 0.08, for lead and sodium cooled reactors, respectively. For the

other quantities of interest, 3–10% uncertainties are predicted. The un-

certainties are not exact since the linearity assumption might be violated.

Therefore the results should be understood as order-of-magnitude esti-

mates, rather than exact values.

In Publication V, parameter uncertainty, modeling uncertainty, and nu-

merical uncertainty are estimated. For these cases, they are on the order

of 10%, 1% and 10−4 %, respectively. The latter two could be reduced by

improving the model or computational methods but there is no need to do

that as long as parameter uncertainty is the dominant source of uncer-

tainty.
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Uncertainty analysis in reactor physics is a mature field. The main con-

tributions of this Thesis are the proposed quality assurance methods, the

methods to find nearby more proper covariances, the identification of or-

der-of-magnitude differences in uncertainty estimates of nuclear data li-

braries, the remarks on other sources of uncertainty than the parameter

uncertainty and verification, in a few cases, that uncertainty due to nu-

clear data is the largest source of uncertainty. These contributions enable

higher quality and more complete estimates of levels of confidence in the

calculated quantities of interest.

The quality assurance methods can be used by users of evaluations of

nuclear data and evaluators of nuclear data as a part of quality assur-

ance programs. Quality of the uncertainty estimates of nuclear data is of

prime importance since the results are directly defined by the data. Prac-

tical implementations are needed by both groups, and for this purpose an

implementation for each method has been described in detail in Publica-

tions I–III.

For the users of evaluations, the methods should be incorporated to nu-

clear data processing software as a part of its quality assurance routines.

It is hoped that the methods soon become obsolete in the sense that no

evaluated covariances will be improper and no nuclear data processing

software contains errors that make the processed covariances improper.

Nevertheless, the quality assurance routines provide an additional check,

which can detect blunders.

The evaluators benefit mostly from the energy-dependent versions of

the methods. The methods to find nearby more proper covariances adds

to the evaluation process: It can be used either to finalize an evaluation,

which is almost, but not completely, proper, or to find the energy region

and pieces of nuclear data which are not proper for further analysis. The
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methods can be incorporated in to existing quality assurance programs.

The order-of-magnitude differences in uncertainty estimates of nuclear

data identified in Publication IV should be further checked by the nuclear

data community. Small differences are permissible and expected, since

the evaluation process includes expert judgment, which the evaluators

use slightly differently, and available experimental data and theoretical

information change in time. However, the larger differences in the ap-

portioned uncertainties signal that an evaluator has not included all sig-

nificant information in the uncertainty estimates. The significant infor-

mation might be missing from the evaluation with the larger or smaller

uncertainties since new information might increase or decrease the un-

certainties. There is also a possibility that an evaluation is simply erro-

neous. In both cases the comparison works as an ad hoc quality assurance

method.

The uncertainty caused by uncertainty in nuclear data was the largest

source of uncertainty in the cases considered in Publication V. However,

the analyzed cases were simple and can not be directly generalized for

more complex situations. Especially in deterministic codes uncertainty

caused by various approximations in the model might cause significant

modeling uncertainty.

6.1 Future prospects

The estimation of model uncertainty in deterministic codes should be per-

formed. This can be done by comparing several results to a model with a

more faithful representation of physics, for example, a model in a Monte

Carlo code.

The origin of inconsistent covariances for 232
90Th was not resolved in Pub-

lication II. The origin might have been the processing of resonance pa-

rameters in NJOY or the issue might also be with the evaluation itself. The

issue should be resolved.

The method to find nearby consistent covariance matrices is not de-

scribed for cross-material covariances in Publications II and III. The nec-

essary steps have been derived and the method implemented, but the im-

plementation has not been documented in the Publications.

Further applications for the quality assurance methods and the methods

to find nearby proper covariances are proposed in Section 3.1. These in-

clude application of the methods to uncertainties of fission yields, so that
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their normalization could be included in the distribution that describes

the evaluators’ knowledge of the fission yields: presumably the evalua-

tor does, indeed, know about the normalization. The impact of the added

knowledge should be tested. Possible alternative approaches include the

use of Bayesian inference and different filtering techniques.

In the present work, the TALYS-based evaluated nuclear data library has

been left relatively untouched due to data processing issues. The proposed

quality assurance methods should be applied to it.

Determining the correlations in older entries of the EXFOR database is

a completion problem that is in parts similar to the one considered in

Section 3.1.8. If the documentation in these entries is not sufficient, the

methods can, perhaps, be adapted to the specific situation.

There is a need for high-fidelity uncertainty estimates for most param-

eters. In reactor physics, an obvious need is for uncertainty estimates

for interaction of gamma radiation with matter to be included in the gen-

eral-purpose nuclear data libraries. This needs new formats as well as

evaluations of the data.

The practical deterministic uncertainty analysis methods lack the pos-

sibility to account for non-linearities, and the statistical methods are in-

adequate for large numbers of parameters especially when apportioning

the uncertainties of the responses to the uncertainties of the parameters

is required. Hence there is no known general method that could han-

dle non-linearities for a large number of parameters efficiently. For com-

plex large-scale systems there is a need for such an uncertainty analysis

method.

Any project that requires more proper nuclear data covariances will ben-

efit from the application of the proposed quality assurance methods. For

example, the related fields of data adjustment and assimilation benefit

from more proper prior data if the quality assurance methods are applied

to all covariances of nuclear data before its publication. In addition, veri-

fication of the resulting covariances provides assurance for the quality of

the intermediate calculations.
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Errata

Unfortunately, the final versions of the Publications contain a few errors

and the author apologizes for any inconvenience these may have caused.

The following errors have been identified.

Publication I

• It is not mentioned that the gap, as estimated in Eq. (20), can not be

negative.

• In discussion (Section VI.) it is advised to use the absolute (relative)

version of the method when absolute (relative) covariances are going

to be used. It is not mentioned clearly enough that the advice stems

from numerical considerations.

Publication V

• A transposition is missing in Eq. (6b). The correct form of the equa-

tion is

cov(α, α) = 〈(α− E(α))(α− E(α))T〉.

• Below Eq. (6b), the inline equation 〈 · 〉 = ∫ · ∫ p(α)dα has an extra

integral sign. The correct form is 〈 · 〉 = ∫ · p(α)dα.
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Abstract–We propose a novel application of a method to compute the nearest positive semidefinite matrix.
When applied to covariance matrices of multigroup nuclear data, the method removes unphysical
components of the covariances while preserving the physical components of the original covariance matrix.
The result is a mathematically proper covariance matrix.

We show that the method preserves the so-called zero sum rule of covariances of distributions in exact
arithmetic. The results also hold for typical cases of finite precision arithmetic. We identify conditions that
might damage the zero sum rule.

Rounding can distort the eigenvalues of a symmetric matrix. We give a known bound on how large
distortions can occur due to round-off. Consequently, there is a known upper bound on how large negative
eigenvalues can be attributed to round-off error. Current evaluations and processing codes do produce
larger negative eigenvalues.

Three practical examples are processed and analyzed. We demonstrate that satisfactory results can be
achieved.

We discuss briefly the relevance of the method, its properties, and alternative approaches. The method
can be used as a part of a quality assurance program and would be a valuable addition to nuclear data
processing codes.

I. INTRODUCTION

Modern nuclear data files are evaluations that contain
best estimates and uncertainty estimates of nuclear data.
When the latter are used in deterministic codes, the data
are usually processed into approximative multigroup form
with codes such as NJOY (Ref. 1) or PUFF-IV (Ref. 2).
The generated multigroup covariance matrices are
typically slightly asymmetric, and even if they are
symmetric, they are typically not positive semidefinite.
Strictly speaking, the generated covariance matrices are
typically improper. If the covariance matrices contain
large negative eigenvalues, the results of subsequent
calculations are questionable at best.

Lately, the issue has been raised by Kodeli,3 who
provided a program to check for symmetry and

eigenvalues of the generated intrareaction covariance
matrices, and the Low-fidelity Covariance Project,4 in
which it was noted that small negative eigenvalues might
be caused by round-off error. More recently, Mattoon and
Obložinský5 gave a more comprehensive list of desirable
properties of covariance matrices in the context of quality
assurance programs and provided a program to check for
these properties for the generated intrareaction covariance
matrices.

Earlier, Peelle6 had proposed a method to modify a
covariance matrix to ensure its positive definiteness. Alas,
the method is applicable only to a covariance matrix
whose smallest nonnegative eigenvalue is much greater
than the absolute value of the most negative eigenvalue.
This is not a typical situation.

In this paper we propose a novel application of a
method to compute a nearest positive semidefinite
covariance matrix from any generated covariance matrix.*E-mail: risto.vanhanen@aalto.fi
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The method was originally published by Higham,7 but it
seems that it has not been previously applied for
covariances of nuclear data. The method can be applied
to any generated covariance matrix since it will not
modify positive semidefinite matrices.

If the Frobenius norm is used to measure the
nearness, then the nearest symmetric positive covariance
matrix is unique.7 Using the Frobenius norm also seems to
give the lowest, and acceptable, computational cost.

It should be noted that the proposed method does not
produce strictly positive definite matrices. At least, data
assimilation and best-estimate adjustment6,8 require pos-
itive definite covariance matrices. However, covariances of
spectral yields and covariances of cross sections of
redundant reactionsmandate zero eigenvalues to physically
sound covariance matrices. These zero eigenvalues signal
only that the system includes redundant information.

Rounding can distort the eigenvalues of a symmetric
matrix. We give a known bound on how large distortions
can occur due to round-off (see, e.g., Ref. 9). Consequently
there is a known upper bound on how large negative
eigenvalues can be attributed to round-off error.

The paper is organized as follows. Theoretical
background is briefly presented in Sec. II. Details about a
practical implementation are given in Sec. III. Three test
cases are described in Sec. IV, and their results analyzed in
Sec. V. We include cross-reaction covariance matrices but
exclude cross-material covariance matrices, although the
methodology is also readily applicable to cross-material
covariance matrices. The method and results are discussed
in Sec. VI. Finally, in Sec. VII the conclusions are given.

II. THEORY

For the terminology and practical implementation, we
need the following results.

II.A. The Frobenius and Spectral Norms

For A [ R
n|n the Frobenius norm is defined by

EAE2F~
X

i,j

a2ij , ð1Þ

and the spectral norm is defined by

Ak k22~lmax ATA
� �

: ð2Þ

It is also known as the 2-norm.

II.B. A Nearest Symmetric Matrix

Fan and Hoffman10 solved the matrix nearness to
symmetry problem for the unitarily invariant norms. The
following is a special case of the result.

Let A [ R
n|n. The unique nearest symmetric matrix

As in the Frobenius norm is

As~
1

2
AzAT
� �

, ð3Þ

i.e., the symmetric part of A.
By the nearest symmetric matrix, we mean the nearest

symmetric matrix as measured by the Frobenius norm.

II.C. A Nearest Symmetric Positive Semidefinite Matrix

Higham7 proves the following result.

Let A [ R
n|n and set As~ AzATð Þ=2 to be the

nearest symmetric matrix of A. The unique nearest
symmetric positive semidefinite matrix Apsd in the
Frobenius norm to A is

Apsd~Xmax L,0ð ÞXT , ð4Þ

where As~XLXT is the eigendecomposition of the
nearest symmetric matrix and max(L, 0) contains the
nonnegative eigenvalues with negative eigenvalues
replaced by zeros.

By the nearest (symmetric) positive semidefinite
matrix, we mean the nearest symmetric positive semi-
definite matrix as measured by the Frobenius norm.

II.D. Deflation Preserves the Scaled Zero Sum Property

Let A [ R
n|n be a symmetric matrix with the scaled

zero sum property

X

i

siaijsj~0 ð5Þ

and A~XLXT be its eigendecomposition. Then, the
deflated matrix B~A{lxxT , with any eigenpair (l,x),
has the scaled zero sum property

X

i

sibijsj~0 ; ð6Þ

i.e., deflation preserves the scaled zero sum property in
exact arithmetic.

Proof: For eigenpair (0,x) or scale sj~0, there is
nothing to prove. For eigenpair (l,x)=(0,x) and scale
sj=0, we have

Ax~lxu
X

j

aijxj~lxi ð7Þ

so that

X

i

sixi~
X

i

si
X

j

aij
xj

l
~

X

j

xj

l

X

i

siaij~0 ð8Þ
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due to the original scaled zero sum property. Now, for
B~A{lxxT ,

X

i

sibijsj~
X

i

si(aij{lxixj)sj

~

X

i

siaijsj{sjlxj
X

i

sixi~0 ð9Þ

due to the original scaled zero sum property and the
intermediate result.

Note that the nearest positive semidefinite matrix can
be expressed as

Apsd~A{
X

k

lkxkx
T
k , ð10Þ

where the summation runs over negative eigenvalues of
A. Therefore, application of the proposed method
preserves the scaled zero sum property in exact
arithmetic.

Note that absolute covariances of spectral yields of
emitted neutrons have the zero sum property with unit
scales. Relative covariances of spectral yields of emitted
neutrons have the zero sum property with spectral yields
as scales. In both cases the original zero sum property is
preserved under deflation in exact arithmetic.

II.E. Eigenvalues of the Sum of Two Symmetric Matrices

Wilkinson (Ref. 9, Chap. 2, Sec. 44) proves the
following useful result.

Let A, B, and C be [ R
n|n symmetric matrices and

AzB~C : ð11Þ

Denote their eigenvalues by ai, bi, and ci, respectively,
where all three sets are arranged in nonincreasing order.
The s’th eigenvalue of C is bound by

aszbnƒcsƒaszb1 : ð12Þ

III. IMPLEMENTATION

III.A. Block Structure of a Covariance Matrix

A generated covariance matrix A can be represented
in R

n|n, where n~pg, g is the number of groups, and p
is the number of (material, reaction) pairs whose
covariances are described. That is, the generated full
covariance matrix is partitioned into a p|p matrix of
g|g covariance matrices as illustrated in Fig. 1. The
partitioned matrix is usually sparse due to the low number
of cross-reaction and cross-material covariances.

In principle we could apply the proposed method to
the full matrix directly, but it is possible to take advantage
of the sparseness. This saves considerable amounts of
processing time, reduces the memory requirements, and
makes the results somewhat more accurate since we need
to work with smaller matrices.

The idea is to find connected components of the p|p
matrix of g|g covariance matrices. Then, the p|p
matrix can be, in principle, permuted into block diagonal
form, with connected components on the diagonal. In
practice, we assemble the connected components after we
have identified them.

We identify the connected components by forming an
adjacency matrix, where the (material, reaction) pair is
connected to the (material1, reaction1) pair if the
covariance matrix between them is nonzero. We run a
depth first search to identify connected components. This
is fast since the number of (material, reaction) pairs is
usually small.

III.B. Application of the Proposed Method

We apply the proposed method to every connected
component separately.

(n
, t

ot
)

(n, tot)
(n

, e
l)

(n, el)
(n

, n
on

−
el

)
(n, non−el)

(n
, i

ne
l)

(n, inel)
(n

, 2
n)

(n, 2n)
(n

, γ
)

(n, γ)

Fig. 1. The n|n generated covariance matrix of 207
82Pb of

ENDF/B-VII.1 (Ref. 16). The locations of nonzero elements of
each g|g block are emphasized. The smaller connected
component of the partitioned p|p matrix consists of only the
(n, 2n) reaction and the larger of the other reactions. In
principle, this is part of a larger covariance matrix of all
(material, reaction) pairs but is not connected to any of them
since 207

82Pb lacks cross-material covariances.
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III.B.1. Eigendecomposition

We use the expert driver DSYEVR (Ref. 11) of
LAPACK (Refs. 11 and 12) to compute the eigendecom-
position:

A~
Xn

i~1

lixix
T
i : ð13Þ

Here, finite precision plays a role. Instead of true
eigenvalues li and true eigenvectors xi, we get computed
eigenvalues l̂li and computed eigenvectors x̂xi.

In general, the eigenvalues are solved rather well.
Given the Rayleigh quotient r̂ri~x̂xTi Ax̂xi

�
x̂xTi x̂xi, we have

jl̂li{lijƒjl̂li{r̂rijzjr̂ri{lij , ð14Þ

from which we can compute the first term and use one of
the following upper bounds for the latter term (Ref. 13,
Theorem 4.5.1):

jr̂ri{lijƒEr(x̂xi)E2 , ð15Þ

where the residual r(x̂xi) is Ax̂xi{r̂rx̂xi. If the gap between
the Rayleigh quotient and the nearest eigenvalue that the
Rayleigh quotient is not approximating, i.e., gi~
minlj=li jr̂ri{ljj, is large enough, we have tighter bounds
(Ref. 13, Theorem 11.7.1):

jr̂ri{lijƒEr(x̂xi)E
2
2=gi : ð16Þ

The eigenvectors are solved less accurately. The
computed eigenvector x̂xi can be expressed as13

x̂xi~xi cos hizwi sin hi , ð17Þ

where wi is a unit vector orthogonal to xi in the plane
spanned by xi and x̂xi, and hi is the angle between xi and x̂xi.
There is no general guarantee about the quality of the
eigenvectors, except the orthogonality property11:

x̂xTi x̂xj~O emð Þ for i=j , ð18Þ

where em is the machine epsilon, and except the acute
angle between the computed and true eigenvector (Ref.
13, Theorem 11.7.1):

j sin hijƒEr(x̂xi)E2=gi : ð19Þ

There is a tendency for the blocks to contain near-zero
eigenvalues for which the absolute gap is very small.
Eigenvectors for these are badly determined. The analysis
does not cover eigenvalues with nonunity multiplicity,
but we have not encountered a need to work with
such things.

In practice, we compute the norm of the residual
directly and estimate the gap by

gi& min
j~i+1

(jr̂ri{r̂rjj{Er(x̂xi)E2) : ð20Þ

Then, the bounds for the Rayleigh quotients are estimated
as the smaller of Eqs. (15) and (16). The bounds for the
eigenvalues are estimated using Eq. (14), but we
acknowledge that we cannot expect better than
jl̂li{lijƒemjl̂lij=2. The bounds for the acute angles of
the eigenvectors are estimated directly using Eq. (19), but
we acknowledge that we cannot have worse than
j sin hjƒ1.

III.B.2. Deflation

We deflate all eigenpairs whose eigenvalue is
negative, given the estimated bound bi, by subtraction.
This gives us the computed nearest positive semidefinite
matrix ÂApsd. We use LAPACK’s symmetric rank 1 update
function DSYR (Ref. 11) for each eigenpair:

ÂApsd~A{
X

l̂liv{bi

l̂lix̂xix̂x
T
i zH , ð21Þ

where H describes the induced rounding error due to
summation. Parlett13 has shown that because of the
orthogonality property of the computed eigenvectors, the
changes in the nondeflated eigenvalues and eigenvectors
are dominated by this rounding error.

III.B.2.a. Zero Sum Property with Finite Precision
Deflation

When applied to absolute covariance matrices, the
deflation preserves the zero sum property in finite
precision arithmetic for well-separated eigenvalues and
for relatively well-separated eigenvalues. When applied to
relative covariance matrices, the zero sum property is
preserved in a relative sense for the same cases. These are
shown in the following, but the analysis does not cover
eigenvalues with nonunity multiplicity.

Consider an absolute covariance matrix A with the
zero sum property. For the computed matrix B̂B~A{
l̂lx̂xx̂xTzH, where H represents the round-off error, the
absolute value of the row sum is bound by

j
X

i

b̂bijjƒj
X

i

aijjzj
X

i

l̂lx̂xix̂xjjzj
X

i

hijj , ð22Þ

where jhijj is at most 3emjaijj and

j
X

i

hijjƒf (n)emEAE2 , ð23Þ
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where f (n) is typically a small constant, but in the worst
case f (n)~3n. Now,

j
X

i

l̂lx̂xix̂xjjƒjx̂xjjjl̂ljj
X

i

(xi cos hzwi sin h)j

~jx̂xjjjl̂ljj
X

i

wi sin hj

ƒjx̂xjjjl̂ljEr(x̂x)E=g ð24Þ

ƒjx̂xjjEr(x̂x)j=c , ð25Þ

where c~g=jl̂lj is the relative gap.a Equations (24) and
(25) show the cases for well-separated eigenvalues and
relatively well-separated eigenvalues, respectively.

Consider a relative covariance matrix C, calculated
from A so that sicijsj~aij. For the computed matrix
D̂D~C{m̂mẑẑzzTzH , the scaled row sum is bound by

j
X

i

sid̂dijsjjƒj
X

i

sicijsjjzj
X

i

sim̂mẑziẑzjsjjzj
X

i

sihijsjj

ƒjsjjEsE? ĵzzjjjm̂mjj sin hjzjsjjEsE? f (n)emECE2

~jsjjEsE? ĵzzjjjm̂mjj sin hjzf (n)emECE2
� �

, ð26Þ

where the details are essentially the same as with the
absolute case. However, any induced error is amplified
by the factor jsjjEsE?.

In practice,wemonitor themagnitude of the term inEq.
(24) with jx̂xjjƒ1 and compare it with the magnitude of the
round-off term with f (n)~100. We also monitor EsE2

?
so

that any large amplifiers can be detected. However, for
properly normalized spectral yields EsE?ƒ1.

The above bounds are even better if the zero sum
property is originally only approximately met—that is, if

j
X

i

âaijj~j
X

i

siĉcijsjjƒesjsjjEsE? , ð27Þ

where es§em gives the tolerance for the initial row sum.b

However, the spectral decomposition of ÂA only approx-
imates the spectral decomposition of A.

III.C. Distortion of Eigenvalues due to Round-Off Error

Consider a symmetric matrix A [ R
n|n. The rounded

matrix is equal to AzB, where B [ R
n|n contains the

round-off errors. The magnitude of the round-off error is
bounded so that jbijjƒerjaijj, where er is the rounding

precision. For example, we have er~5|10{n for
rounding to n decimals. This implies that EBE2ƒ
ern maxij jaijj (Ref. 9, Chap. 2, Secs. 44 and 45).

As a direct consequence of Sec. II.E, the round-off
error can distort eigenvalues of A by at most EBE2. The
bound of ern maxij jaijj gives an upper limit for what can
be attributed to round-off error. Any negative eigenvalue
whose magnitude is larger than the bound results from
something other than round-off error.

IV. CALCULATIONS

We use a slightly modified NJOY 2012.8 (Ref. 1) to
process the ENDF-6 format15 nuclear data from the ENDF/
B-VII.1 (Ref. 16) evaluation into multigroup covariances.
We present three cases where we apply the method to
covariance matrices with negative eigenvalues. The cases
were selected to cover a variety of data types and group
structures. In all cases the magnitudes of the negative
eigenvalues are larger than what the round-off error
would give in the worst case and larger than typical in
the first two cases.

All the cases use a relative reconstruction tolerance of
10{5 and temperature of 300 K, and Maxwellz 1/
Ez fission spectrum weight is used with a 0.1-eV
thermal break, 820.3-keV fission break, and 1.4-MeV
fission temperature. The module PURR is run with 40
bins and 80 ladders. We extract the covariances from
ERRORR in their processing (double) precision, but note
that the original data are roughly in single precision only.

The first case is absolute covariances of cross sections
of 35

17Cl. The evaluation contains covariances for elastic
scattering, radiative capture, and proton emission that are
connected through cross-reaction covariances and there-
fore form a single connected component. We use the
XMAS 172-group structure17 with the lowest boundary
set to 10{5 eV and a 20-MeV boundary added.

The second case is relative covariances of average
cosine of the scattering angle in the laboratory system for
elastic scattering of neutrons of 232

90Th—that is, relative
covariances of �mm of 232

90 Th. We use the group structure of
the evaluation, which contains 25groups.

The third case is relative covariances of spectral yields
of neutrons emitted from 252

98Cf fission for incident neutron
energies between 10{5 eV and 5 MeV—that is, relative
covariances of x of 252

98Cf. We use the VITAMIN-J 175-
group structure17 augmented with a 20-MeV boundary.

V. RESULTS

V.A. Absolute Covariances of Cross Sections of 35
17Cl

The absolute difference between the original and
deflated absolute covariances of cross sections of 35

17Cl is
shown in Fig. 2. The variances do not decrease when the

aThe definition here is somewhat different from, for
example, in Refs. 11 and 14.

bThe ENDF-6 format15 specifies es~10{51=eV=EsE? for
covariances of spectral yields.
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covariance matrix is deflated. The asymmetry of the
original covariances is so slight that it is not visible. The
largest changes occur in the thermal-epithermal regions of
the cross sections of elastic scattering and neutron capture.
Their cross-reaction covariances are also affected by the
deflation. The absolute changes in the (n, p0) reaction are
small although small differences in the cross-reaction
covariances with elastic scattering are somewhat visible.

The largest absolute deviation from symmetry in the
original covariance matrix is 5.77|10{15 b2 and occurs
between groups in the thermal region of the (n, c) reaction.
The largest relative deviation from symmetry is found
between groups in the thermal and epithermal regions of
covariances of (n, p0) and is on the order 10{8%. The
absolute asymmetry is typical, but the relative asymmetry is
larger than typical, although still small.

The eigenvalues of the symmetrized and deflated
covariance matrices are shown in Fig. 3. The bottom
figure shows that the large positive eigenvalues are well
preserved while the large negative eigenvalues are shifted
toward zero. Two of the eigenvalues of the symmetrized
covariance matrix are certainly not induced by round-off
error.

The near-origin magnification shows the cluster of
near-zero eigenvalues with few well-separated eigenvalues
nearby. Most of the smaller negative eigenvalues are shifted
to zero, while the visible positive eigenvalues are preserved.
The symmetrized covariance matrix has 24 negative
eigenvalues and 388 eigenvalues that might be zero, given

their estimatedbounds.After the deflation, twonegative, but
tiny, eigenvalues are left: ({5.30 + 2.79)|10{15b2 and
({2.89 + 2.73)|10{15b2, where the bounds are esti-
mated as described in Sec. III.B.1. However, five of the
near-zero eigenvalues become positive, but tiny. The
distortions occur due to the accumulated round-off errors
during deflation.
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Fig. 2. Absolute difference between the original and the deflated absolute covariances of cross sections of 35
17Cl.
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Fig. 3. Eigenvalues of absolute covariances of cross
sections of 35

17Cl before and after deflation. The box around
each eigenvalue presents the estimated bounds due to finite
precision computation [box colors inverted (color online)].
Number line: All eigenvalues. The boxes are hardly visible.
Top left: Magnification of a region near the origin. Top right:
Magnification of the largest absolute distortion to an eigen-
value. The width of the axis is 42 ulps&2|10{14b2.
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The top-right figure in Fig. 3 shows the largest
absolute distortion in an eigenvalue. The distortion is
9.33|10{15 b2 and occurs due to rounding errors.

The standard deviations from the symmetrized and
deflated covariance matrices are shown in Fig. 4. For the
elastic scattering the standard deviation is roughly
doubled in the lowest-energy energy group. This occurs
because of deflation of the largest negative eigenvalue.
The large contribution is shown in Fig. 5. Here, the
contribution means the square root of the effect to
variance [see Eq. (21)]. In the epithermal and high-energy
regions, the changes to the standard deviations of elastic
scattering due to deflation are mostly small, v2%, except
in one group, where it is 8%.

The relative standard deviations in the (n, p0) reaction
change the most: For the 103- to 106-eV region, the
relative standard deviations change from at most 354% to
at most 7330% (out of scale in Fig. 4) in a few groups.
For the (n, c) reaction the same occurs, but the final
standard deviations are at most 601%. However, the
changes in absolute covariances are small. For the (n, p0)
reaction the change in the relative standard deviation does
not come from the first few eigenpairs but predominantly
from the fourth and subsequent eigenpairs. The increase in
standard deviations of (n, c) is mostly due to the largest
eigenpair.

The large changes in relative standard deviations
occur because the cross sections, and therefore absolute
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Fig. 4. Standard deviations of the cross sections of 35
17Cl before and after deflation (the nearest absolute positive semidefinite

covariance matrix). Left axes: absolute standard deviations. Right axes: relative standard deviations.
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covariances, vary by orders of magnitude. A smallish
absolute change in the covariances of small cross sections
is a large relative change. The distance between the
absolute symmetrized and the absolute nearest positive
semidefinite matrix is measured in absolute units. That is,
the measure is for absolute changes, not relative changes,
and therefore, the nearest positive semidefinite matrix in
the absolute sense is sought.

Finding the nearest relative covariance matrix would
yield different results. In this case there was a larger
change in the thermal region of the covariances of elastic
scattering, including a few sharp peaks, but almost no
change in the epithermal to high-energy region of the
(n, p0) and (n, c) reactions. This is illustrated in Fig. 6.

Application of the method took v1s, and NJOY ran
for *10 min.

V.B. Relative Covariances of �mm of 232
90Th

The absolute difference between the original and
deflated relative covariances of �mm of 232

90Th is shown in
Fig. 7. The variances do not decrease when the covariance
matrix is deflated. The asymmetry of the original
covariances is so slight that it is not visible. The largest
changes occur near the 1-MeV region. The intrareaction
covariances that have either component in the 1-MeV
region are also affected by the deflation.

The largest absolute deviation from symmetry in the
original covariance matrix is 4.34|10{19 and occurs
between groups near 200 keV. The largest relative
deviation from symmetry is found in the covariances
between groups near 3 and 20 MeV and is on the order
10{14%. These slight asymmetries are typical.

The eigenvalues of the symmetrized and deflated
covariance matrices are shown in Fig. 8. The bottom
figure shows that the large positive eigenvalues are well

preserved while the large negative eigenvalues are shifted
toward zero. Note that the largest eigenvalue is only
1.87|10{2. All four of the negative eigenvalues of the
symmetrized covariance matrix are certainly not induced
by round-off error.

The near-origin magnification shows that all eigen-
values are well separated from each other. The smaller
negative eigenvalues are shifted to zero, while most of the
visible positive eigenvalues are preserved. The symme-
trized covariance matrix has four negative eigenvalues
and only one eigenvalue that might be zero, given their
estimated bounds. All the negative eigenvalues are
deflated. However, one of the near-zero eigenvalues
becomes positive, but tiny. This occurs due to the
accumulated round-off errors during deflation.

The top-right figure of Fig. 8 shows the largest
absolute distortion in an eigenvalue. The distortion is
4.16|10{17 and occurs due to the rounding errors.

The standard deviations from the symmetrized and
deflated covariance matrices are shown in Fig. 9. The
original standard deviations are imaginary in four groups,
as indicated in Fig. 9. After the deflation the standard
devations in these groups are positive.

The cluster of three energy groups with imaginary
standard deviations near 1 MeV is explained by the three
most negative eigenpairs. This is partly illustrated in
Fig. 10. The fourth energy group with the imaginary
standard deviation near 5 MeV is mostly due to the fourth
and first negative eigenpairs.

Application of the method took v1 s, and NJOY ran
for *40 min.

V.C Relative Covariances of Spectral Yields of 252
98Cf

The absolute difference between the original and
deflated relative covariances of spectral yields of 252

98Cf is
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Fig. 6. Standard deviations of the cross sections of 35
17Cl before and after deflation (the nearest relative positive semidefinite

covariance matrix). Left axes: absolute standard deviations. Right axes: relative standard deviations.
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shown in Fig. 11. The variances do not decrease when the
covariance matrix is deflated. The asymmetry of the
original covariances is so slight that it is not visible.
The largest changes occur in the thermal region. The
intrareaction covariances that have either component in
the thermal region are also affected by the deflation.

The largest absolute deviation from symmetry in the
original covariance matrix is 1.33|10{15 and occurs
between groups in the high-energy region. The largest
relative deviation from symmetry is also found between
groups in the high-energy region and is on the order
10{13%. These slight asymmetries are typical.

The eigenvalues of the symmetrized and deflated
covariance matrices are shown in Fig. 12. The bottom

figure shows that the large positive eigenvalue is well
preserved. Twenty-one of the eigenvalues of the symme-
trized covariance matrix are certainly not induced by
round-off error.

The near-origin magnification shows the cluster of
near-zero eigenvalues. Here, all eigenvalues might be
zero, given their estimated bounds. The symmetrized
covariance matrix has 30 negative eigenvalues and 105
eigenvalues that might be zero, given their estimated
bounds. After the deflation there are 135 eigenvalues that
might be zero given their estimated bounds. That is, the
30 negative eigenvalues are deflated within working
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Fig. 8. Eigenvalues of relative covariances of �mm of 232
90Th

before and after deflation. The box around each eigenvalue
presents the estimated bounds due to finite precision computa-
tion (box colors inverted). Number line: All eigenvalues. The
boxes are hardly visible. Top left: Magnification of a region
near the origin. Top right: Magnification of the largest absolute
distortion to an eigenvalue. The width of the axis is
26 ulps&9|10{17.
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precision. Note that there should be at least one zero
eigenvalue due to the scaled zero sum property.

The top-right figure of Fig. 12 shows the largest
absolute distortion in an eigenvalue. The distortion is
1.49|10{13 and occurs due the rounding errors.

The standard deviations from the symmetrized and
deflated covariance matrices are shown in Fig. 13. In the
high-energy region the relative standard deviations go up
to 1.72 but change v0.1% during deflation. The standard
deviation is increased by an order of magnitude in the
lowest-energy energy group. This occurs because of
deflation of the two largest negative eigenvalues. Their
contributions are shown in Fig. 14. The contributions are
large in the lowest-energy energy group. In other energy
regions the changes to standard deviations due to deflation
are small.

The zero sum property is well preserved during
deflation. Before the deflation the maximum absolute
value of the row sum per spectral yield was 1.833|10{6

1/eV, and the average value was 2.812|10{7 1/eV.
After the deflation these had changed to 1.840|10{6

1/eV and 2.807|10{7 1/eV, respectively, giving an
increase of 0.4022% and decrease of 0.1956%, respect-
ively. These are small changes.

Application of the method took v1 s, and NJOY ran
for *5 min.
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Fig. 12. Eigenvalues of relative covariances of spectral
yields of 252

98Cf before and after deflation. The box around each
eigenvalue presents the estimated bounds due to finite precision
computation (box colors inverted). Number line: All eigenva-
lues. The boxes are hardly visible. Top left: Magnification of a
region near the origin. Top right: Magnification of the largest
absolute distortion to an eigenvalue. The width of the axis is
43 ulps&3|10{13.
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VI. DISCUSSION

The negative eigenvalues are a result of unphysical
data, errors in the processing code, or round-off error. The
first two should be corrected rather than ignored by
computing a nearby mathematically valid covariance matrix.
The magnitude of the third one can be controlled by the
bound given in Sec. III.C. In any case the proposed method
can be used as part of a quality assurance program to detect
these problems.

However, the data might be mostly correct and
negative eigenvalues small in magnitude. In such case the
use of a nearby positive semidefinite covariance matrix
might be justified. Any covariance matrix with large
negative eigenvalues can be rejected and smaller negative
eigenpairs deflated. If the results are to be rounded, the
maximum error induced by rounding gives a practical
measure on how small eigenpairs should be deflated.

The method, in exact arithmetic, has some good
qualities that should be mentioned. It is conservative for
propagation of uncertainty in the sense that variances for
any response will not decrease due to application of the
method, and the method preserves eigenvalues and
eigenvectors, which implies that the sum rules of
redundant (derived) cross sections are preserved.

The example of chlorine shows that some negative
eigenvalues may remain after deflation. These are due to
the accumulated rounding errors during deflation and as
such are tiny. The method could be reapplied, but this
requires further analysis on deflation of near-zero gap
eigenvalues. Alternatively, a better method of deflation like
deflation by similarity transformations might help here.

There are other possible approaches when computing
a nearby positive semidefinite covariance matrix. For
example, one could use a different norm than the
Frobenius norm as a measure7 or compute a nearest
correlation matrix18 and scale it back to a covariance
matrix. In their current forms these methods seem to be
iterative and computationally more expensive than the
proposed method. Computing a nearest correlation matrix
would have the advantage of preserving variances.
However, such a method could not handle the example
of thorium with negative variances.

The method can be applied to absolute or relative
covariance matrices. The example of chlorine shows that
the results can be quite different, at least when large
negative eigenvalues are present. Therefore, it is advisable
to apply the method to the covariance matrix that is going
to be used. One should, however, consider finding and
correcting the underlaying problem rather than making
large corrections. After all, the method has no physical
interpretation but merely removes unphysical information
with the fewest changes to the data in the sense of the
Frobenius norm.

In principle, the eigenvalues can be mapped back to
physical parameters from which the covariances were
derived, if such data trail exists. Mapping the negative

eigenvalues can yield insight into which physical para-
meters have unphysical values. The near-zero eigenvalues
give insight to irrelevant parameters.

It would suffice to compute only negative eigenvalues
instead of the full spectrum. However, we did not find a
suitable standard linear algebra method to compute them
with the described properties. The error analysis should be
reworked in those cases.

Alternatively, one could compute only the positive
eigenvalues. The eigenpairs with positive eigenvalues
contain all the information that is needed in subsequent
applications. This also solves the issue of zero eigenva-
lues, since the eigenpairs with positive eigenvalues
describe the relevant physical parameters.

VII. CONCLUSIONS

The proposed method to find the nearest symmetric
positive semidefinite matrix has been applied to covar-
iance matrices of multigroup nuclear data. It has been
demonstrated that the method can, in typical cases,
provide positive semidefinite covariance matrices and, in
extreme cases, provide symmetric matrices with only tiny
negative eigenvalues.

Application of the method, alternative approaches,
and possible enhancements for the extreme cases were
discussed briefly. A known upper bound for the
magnitude of negative eigenvalues induced by round-off
error is given.

The method has some good qualities. It is computa-
tionally affordable, and it preserves the sum rules of
derived cross sections and the zero sum rules. It is
conservative in the sense that it does not reduce variances
of the data. However, it lacks physical interpretation.

The method can be applied to cross-material, cross-
reaction, and intrareaction covariances. It can be used as a
part of a quality assurance program to detect large
problems and correct small ones. Use of the method
would be a valuable addition to programs that generate
multigroup covariance matrices.
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Abstract– It is not uncommon that the covariances of multigroup nuclear data do not obey the sum rules of
nuclear data. We present a matrix nearness problem of finding a nearest symmetric matrix with given null
vectors and solve it when the distance is measured in the Frobenius norm. The problem appears to be new.
We propose that the method should be used to find nearest consistent multigroup covariance matrices with
respect to the sum rules of redundant nuclear data.

If the multigroup covariances cannot be easily interpreted in a consistent manner, there is some
ambiguity in choosing values for the covariances that are not explicitly mentioned. We present and compare
a simple and a heuristic characterization method.

Three practical examples are processed and analyzed: relative covariances of cross sections of 9440Zr and
absolute covariances of cross sections of 50

24Cr and 232
90Th. We demonstrate that satisfactory results can be

achieved.
We discuss the properties of the proposed method and the characterization methods and suggest

possible improvements. The methods can be used as a part of a quality assurance program and might be
valuable additions to nuclear data processing codes.

I. INTRODUCTION

Evaluated nuclear data files contain information that
describe physical quantities referred to as nuclear data.
In modern nuclear data files, the information consists of
best estimates and uncertainty estimates of the nuclear
data. These can be interpreted as an approximative
representation of a distribution, which describes the
evaluator’s knowledge of the nuclear data. The covari-
ances of the nuclear data are the second central moment of
this distribution. When the covariances are used in
deterministic codes, the data are usually processed into
a more approximative multigroup form with codes such as
NJOY (Ref. 1) or PUFF-IV (Ref. 2). It is not uncommon
for the generated multigroup covariance matrices to be
inconsistent in the sense that they violate the so-called
sum rules of redundant nuclear data. If the covariance
matrices are far from consistent, the results of subsequent
calculations are questionable at best.

The requirement of consistency has been identified at

least in a quality assurance procedure as reported by

Smith.3 However, the quality assurance procedure does

not require that the evaluations should be consistent: it

only notes that covariance matrices may contain zero

eigenvalues due to the consistency. Overall the issue has

received little attention.
It is possible to generate consistent covariances by

ignoring the covariances of redundant nuclear data and

using the propagation-of-errors formula to generate the

redundant information when needed. We refer to this

method as the standard method. Alas, this ignores that

usually the redundant nuclear data are known the best.

The ENDF-6 Formats Manual,4 for example, states: “The

total is often the best-known cross section,” “The elastic

scattering cross section is generally not known to the same

accuracy as the total cross section,” and “The nonelastic

cross section, or any part thereof, is not generally

measured with the same energy resolution as the total

cross section.” Therefore, when the redundant data are

ignored, the uncertainties are unnecessarily overestimated.*E-mail: risto.vanhanen@aalto.fi

60



In this paper we introduce a novel method to find a
nearest symmetric matrix with specified null vectors in the
sense that the required modifications are the smallest in a
norm. We solve the problem for the Frobenius norm and
note that the solution is unique. We show that the solution
can be applied to find the nearest consistent multigroup
covariance matrix.

The proposed method does not ignore any covari-
ances; i.e., it uses all available information. However,
under finite-precision computation the method modifies
consistent covariance matrices, and therefore should not
be applied to them. We give a practical criterion to
identify consistent covariance matrices to avoid damaging
consistent covariance matrices.

Before any use, the covariances need to be charac-
terized, i.e., given some values. Usually the evaluator has
characterized many, but not all, covariances, and the
processing code faithfully generates only those multi-
group covariance matrices that the evaluator has charac-
terized. When the evaluation can be easily interpreted in a
consistent manner, the missing covariances are easily
characterized consistently. When the interpretation is not
possible, there is some ambiguity in characterizing the
covariances. We compare a simple and a heuristic
characterization method, which can be used to complete
the characterization by using the covariances character-
ized by the evaluator. Neither characterization method is
clearly superior to the other.

The paper is organized as follows. The theoretical
background is presented in Sec. II. Details of a practical
implementation are given in Sec. III. Three examples
are described in Sec. IV and their results analyzed in Sec.
V. The method and results are discussed in Sec. VI, and
finally in Sec. VII the conclusions are given.

II. THEORY

We need the following results for the terminology,
theoretical background, and a practical implementation.

II.A. The Frobenius and Spectral Norms,
and an Inequality

For A [ R
m£n, the Frobenius norm is defined by

Ak k2F ¼
X

i,j

a2ij , (1)

and the spectral norm (2-norm) is defined by

Ak k22 ¼ lmaxðA
TAÞ , (2)

where lmaxðA
TAÞ is the largest eigenvalue of ATA.

It follows from Horn’s note5 that for A [ R
m£n,

B [ R
n£k, and C [ R

k£p, the inequality

ABCk kU# Ak k2 Bk kU Ck k2 (3)

holds for any unitarily invariant norm �k kU. The
Frobenius and spectral norms are unitarily invariant.

II.B. Generalized Inverses

Penrose6 proves the following:

Let A [ R
m£n and G [ R

n£m. For any A, the four
equations

AGA ¼ A , (4)

GAG ¼ G , (5)

ðAGÞT ¼ AG , (6)

and

ðGAÞT ¼ GA (7)

have a unique solution for G. The solution is called the
generalized inverse of A and is denoted by Aþ.

We also refer to minimum-norm reflexive generalized
inverses, which satisfy Eqs. (4), (5), and (7), are not
unique, and are denoted by A,. However, A,A is unique
(Ref. 7, Theorems 2.12 and 2.13). See, for example, Refs.
7 and 8 for further details.

II.C. Symmetric Solution of a Linear Matrix Equation

Don9 proves the following:
Let A [ R

m£n and B [ R
m£n be general matrices and

X [ R
n£n a symmetric matrix. The system AX ¼ B is

consistent if and only if AA,B ¼ B and ABT ¼ BAT.
In that case it has the general solution

X ¼ A,Bþ ðI 2 A,AÞðA,BÞT þ ðI 2 A,AÞZðI 2 A,AÞ ,

(8)

with Z [ R
n£n an arbitrary symmetric matrix. The

minimum norm solution results for Z ¼ 0. The consist-
ency for any A, implies consistency for all minimum-
norm reflexive generalized inverses.

Note. The minimum norm solution refers to the
minimum of the Frobenius norm, although the restriction
of the norm is not explicitly stated by Don.

II.D. Finding a Nearest Symmetric Matrix with
Specified Null Vectors

The problem of finding a nearest symmetric matrix
with specified null vectors can be formulated as the
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following matrix nearness problem: For given U [ R
m£n

containing the specified null vectors in columns and
symmetric C [ R

m£m, find the minimum distance

dðCÞ ¼ min{ Xk k : ðCþ XÞU ¼ 0;

C,X [ R
m£m, sym:;U [ R

m£n} ,
(9)

and a symmetric X [ R
m£n achieving the minimum.

For the Frobenius norm, the solution is the following:
the unique minimum is achieved by X ¼ PCP2 C, where
P ¼ I 2 ðU TÞ,U T.

Similar problems for nonsymmetric matrices have
been considered before, but we have not found a prior
formulation for this matrix nearness problem.

Proof. The equation ðCþ XÞU ¼ 0 can be expressed
as U TX ¼ 2U TC. Don’s result can be applied with
A ¼ U T and B ¼ 2U TC. It is easy to confirm that the
system is consistent and therefore has a solution. The
minimum solution is the claimed one. Uniqueness follows
from the uniqueness of ðU TÞ,U T.

Note. Since ðU TÞ,U T is unique, one may use the
identity ðU TÞþ ¼ ðUþÞT to replace ðU TÞ,s. This gives
P ¼ I 2 UUþ.

Note. It is straightforward to verify that P is an
orthogonal projection matrix; i.e., P2 ¼ P and P ¼ PT,
and therefore Pk k2# 1. Now, using Eq. (3),
Cþ Xk kU¼ PCPk kU# Ck kU for both the Frobenius
and spectral norms. This shows that the nearest symmetric
matrix with specified null vectors does not grow and
might be reduced in the norms compared to the original
symmetric matrix.

Note. If C is positive semidefinite, i.e., x TCx $ 0 for
all x [ R

m, then x TðCþ XÞx ¼ x TPCPx ¼ yTCy $ 0,
which shows that Cþ X is also positive semidefinite.
Naturally the same does not apply for strict positive
definiteness since zero eigenvalues are introduced for the
null vectors.

II.E. Multigroup Nuclear Data and Their Covariances

The multigroup form of a piece of nuclear data, e.g.,
cross sections of reactions or average number of neutrons
emitted in a fission, can be represented as

xk ¼ ðxk,1, . . . ,xk,gÞ [ R
g , (10)

where g is the number of energy groups. The multigroup
nuclear data of a single material can be represented as

x ¼ ðx1,x2, . . . ,xnÞ [ R
m , (11)

where n is the number of pieces of nuclear data and
m ¼ ng. Their covariances can be represented as an n £ n
matrix of g £ g covariance matrices, which form the
symmetric partitioned matrix:

C ¼

cov ðx1,x1Þ cov ðx1,x2Þ · · · cov ðx1,xnÞ

cov ðx2,x1Þ cov ðx2,x2Þ · · · cov ðx2,xnÞ

..

. ..
. . .

. ..
.

cov ðxn,x1Þ cov ðxn,x2Þ · · · cov ðxn,xnÞ

2
666666664

3
777777775

[ R
m£m :

(12)

The covariances can be either relative or absolute.
Properties of the covariances are given, for example, in
Chapter 10 of Ref. 1.

II.F. Propagation of Errors

Some of the nuclear data can be expressed as linear
combinations of other nuclear data. These are sometimes
called redundant or summation nuclear data. The linear
combination can be expressed with a set of coefficients ai,
for which it holds

xI ¼
X

i–I

aixi : (13)

Using the linearity of the covariances, these give the
propagation-of-errors formula

sI cov ðxI,xjÞsj ¼
X

i–I

aisi cov ðxi,xjÞsj , (14)

where a scale sk is diagðxkÞ for relative covariances and
Ig 2 diagðdðxkÞÞ for absolute covariances, where d is the
Kronecker delta, applied componentwise.a The left side of
Eq. (14) is the absolute covariance between the I’th and j’th
reactions. We use sk,i when referring to the i’th diagonal
element of sk. The transpose is implied in Eq. (14).

II.G. Finding a Nearest Consistent Covariance Matrix

The consistency of covariances with respect to
linearly redundant nuclear data can be expressed with
null vectors, i.e., eigenvectors with zero eigenvalue, of the
covariance matrix. Equation (13) can be written as

Xn

i¼1

aixi ¼ 0 , (15)

when the coefficient aI is defined to be 21. We refer to
both sets of ai, rather loosely, as a sum rule. The linearity
of covariances implies

aLater on the delta accounts for the implied convention
xk,i ¼ 0 ) cov ðxk,i,xk0 ,jÞ ¼ 0. If such a convention is not
applied, sk ¼ Ig for absolute covariances will do.
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Xn

i¼1

aisi cov ðxi,xjÞsj ¼ 0 : (16)

Since this must hold for all energy groups, the following
must be eigenvectors of the covariance matrix with zero
eigenvalue:

y Ti ¼ ½a1s1,i, . . . ,ansn,i�^eTi for i ¼ 1, . . . ,g , (17)

where ei is the i’th Cartesian basis vector of g-dimensional
real space and �^� is the Kronecker product.

It proves advantageous to collect the eigenvectors
into columns of V [ R

m£g so that

V ¼ ½y 1, . . . ,y n� ) V T ¼ ½a1s1, . . . ,ansn� : (18)

The nonzero eigenvectors are clearly linearly independent.
The nearest consistent covariance matrix in the

Frobenius norm can be calculated by collecting l different
sum rules as U ¼ ½V1, . . . ,Vl� [ R

m£p, where p ¼ gl and
finding the nearest symmetric matrix to the covariance
matrix C, with null vectors specified by U. This gives a
nearest consistent covariance matrix with respect to the l
sum rules. By the nearest consistent multigroup covari-
ance matrix, we mean the nearest consistent multigroup
covariance matrix in the Frobenius norm. Note that
sequentially finding the nearest symmetric matrix with
null vectors specified by Vk, k ¼ 1, . . . ,l, might not yield
a consistent covariance matrix.

II.H. Applying Householder Transformations

Wilkinson (Ref. 10 and references therein) studied
finite-precision effects of Householder transformations.
The following is a weaker version of Higham’s
formulation (Ref. 11, Lemma 19.3):

Consider the sequence of transformations
Akþ1 ¼ HkAk, k ¼ 1, . . . ,r, where A1 ¼ A [ R

m£n and
Hk ¼ I 2 y ky

T

k [ R
m£m is a Householder matrix. Here

~gm ¼ cmu=ð12 cmuÞ, where u is the unit roundoff and c
a small integer constant. The number of transformations r
is bounded by r ~gm , 1=2. Assume that the transform-
ations are performed using computed Householder vectors
ŷ k that satisfy ŷ k ¼ y k þ Dy k, jDy kj # ~gm, and
y kk k ¼

ffiffiffi
2

p
. The computed matrix Ârþ1 satisfies

Ârþ1 ¼ QTðAþ DAÞ , (19)

where QT ¼ HrHr21· · ·H1 and DAk kF# r ~gm Ak kF.
Note. For the inverse sequence of transformations,

i.e., Akþ1 ¼ Hrþ12kAk, k ¼ 1, . . . ,r, we have
Ârþ1 ¼ QðAþ DAÞ with the above bound for DA.
If A [ R

n£m is postmultiplied by the transformations,
we get Ârþ1 ¼ ðAþ DAÞQ and Ârþ1 ¼ ðAþ DAÞQT with
the same bound for DA.

III. IMPLEMENTATION

We apply the following to every material separately.

III.A. Constructing the Sum Rules

The redundancies of nuclear data can be expressed as
a forest of disjoint trees. Two of the trees are illustrated in
Fig. 1, where the cross-section tree follows the ENDF sum
rules.4 The partials of a redundant nuclear data piece are
represented as their children. All shown partials have unit
coefficients. These form an elementary set of sum rules.
The elementary sum rules do not represent directly
applicable sum rules, since in a practical case some of
the redundant nuclear data do not have any covariances;
i.e., the covariances for some of the redundant nuclear
data are missing.

An obvious approach is to derive the missing
redundant covariances by using the propagation-of-errors
formula. Then the elementary sum rules represent the
directly applicable sum rules.

An alternative approach is to deduce the sum rules for
the present redundant nuclear data. In the sum rules, it
suffices to replace recursively any partial that is also
redundant and is not present by its partials. A simple tree-
traversal with the replacing logic will create the sum rules,
when the traversal is started from each redundant nuclear
data piece that has at least some covariances present.

A specific issue to ENDF-6 Formats4 is lumped
covariances, which are covariances for evaluator-defined
sums of nuclear data pieces. In both approaches any
partial of a lumped covariance should be considered to be
present, and the partials should be replaced by the lumped
covariance after the sum rules have been deduced.
However, the obvious approach will not work if an
evaluation contains lumped covariances whose partials are
not direct partials of a single redundant nuclear data piece.
The alternative approach works for somewhat more

σn,t

σn,f

νt

νdνpσn,el σn,non-el

σn,inel σn,2n σn,3n σn,abs

σn,dis

Fig. 1. Part of the forest of redundancies of nuclear data.
The trees for s and n are shown. The dots show where the trees
are truncated.
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general lumped covariances. Neither approach can solve
the general problem with lumped covariances, which is
that the presence of lumped covariances might transform
the trees into general graphs.

In favorable conditions, we get a set of sum rules with
either approach, which can be used to assemble the null
vectors of Eq. (17). We use the alternative approach.

III.B. Detecting Inconsistency

For each null vector y of Eq. (17), the sums s ¼ Cy
should be zero for consistent covariance matrices.
Assuming that values in C and y can be represented as
finite-precision numbers, computing the sum using the
finite-precision arithmetic gives the computed result ŝ.
The computed result is bound by the following (Ref. 11,
Sec. 3.5):

js2 ŝj # gtjCky j : (20)

Here the absolute value j � j and comparison � # � are to
be interpreted elementwise, gt is tu=ð12 tuÞ, u is the unit
roundoff, and t is the number of nonzero elements in the
null vector: at most the number of nuclear data pieces in
the sum rule. If the evaluated values cannot be represented
as the used finite-precision numbers, two should be added
to t to account for the initial rounding.

Assuming that the covariances are consistent, we
have s ¼ 0. If the criterion in Eq. (20) is violated, then the
assumption is wrong and the covariances are not
consistent. The results can be interpreted in terms of the
sum rule and group to gain insight into which sum rules
are consistent and which are not in different energy
regions. By consistent covariances, we mean that the
covariances are consistent given the criterion in Eq. (20)
with s ¼ 0. A tighter criterion can be constructed by using
extended-precision inner products.

Usually the covariance matrix, and in the relative
case the null vectors, are approximations for which
Ĉ ¼ Cð1þ dÞ and ŷ ¼ yð1þ dÞ for some jdj # �u and
�uq u. In this case we get the bound

js2 ŝj # ðgt þ �g2ÞjCky j , (21)

where �gt ¼ t �u=ð12 t �uÞ. We refer to the covariances,
which, with s ¼ 0, fulfill the criterion in Eq. (21) but not
the consistency criterion in Eq. (20), as covariances that
are consistent up to the precision of the data.

In practice we compute the absolute sum s ¼ jCy j,
the sum of absolutes a ¼ jCky j, and their fraction ŝ=â.
The fraction is compared to gt and gt þ �g2 in terms of the
sum rule and group. We also ignore any sum whose sum
of absolutes is less than ummaxðjCky jÞ, where m is the
length of vector y . This omits very small inconsistent
components, which the implementation of the following
section often produces due to rounding errors.

III.C. Computing the Nearest Consistent
Covariance Matrix

We denote the rank of U ¼ ½V1, . . . ,Vl� of Sec. II.G
by r. The rank of Vk is g minus the number of zero
columns in Vk. It is quite clear that r is the sum of ranks of
Vk, k ¼ 1, . . . ,l, as long as each sum rule is included at
most once. Hence, a full rank Ur [ R

m£r is acquired by
dropping the zero column vectors from U.

The essential part of the projector P of Sec. II.D can
be calculated using the economy size QR decomposition
of Ur and the identity

UrU
þ
r ¼ QRðRTQTQRÞ21

RTQT ¼ QQT : (22)

It is crucial that Ur and therefore R is of full rank. This
ensures that R has an inverse. The nearest consistent
covariance matrix D ¼ Cþ X can be formed using

D ¼ C2 QQTC2 CQQT þ QQTCQQT : (23)

III.C.1. Error Analysis

We compute Ur and note that in the typical situation
it is the exact Ur, since typically all ai ¼ ^1. In the
general case we get Ûr ¼ Ur+ðI þ DÞ, where �+� is the
elementwise product, jDijj # u, and u is the unit roundoff.
We ignore the roundoff and continue by assuming that the
computed Ur is exact.

We compute the economy size QR decomposition of
Ûr using LAPACK’s (Refs. 12 and 13) DGEQRF.
Actually we get a series of Householder matrices
represented by computed Householder vectors. These
can be applied to any matrix with the effect of pre- or
postmultiplying with Q or QT. We use LAPACK’s
DORMQR to perform the multiplications.

We compute C1 ¼ QTC, where C is the covariance
matrix, but get Ĉ1 ¼ QTðCþ DCÞ, where QTDC

�� ��
F
#

DCk kF# r ~gm Ck kF. The first inequality uses Eq. (3) and
Qk k2# 1, and the second inequality is due to the error

analysis in Sec. II.H. Then we compute C2 ¼ QĈ1 and get

Ĉ2 ¼ QðĈ1 þ DĈ1Þ ¼ QQTCþ D ~C2 , (24)

where D ~C2

�� ��
F
# r ~gmð2þ r ~gmÞ Ck kF. Computing C3 ¼

Ĉ2Q and C4 ¼ Ĉ3Q
T gives Ĉ4 ¼ QQTCQQT þ D ~C4,

where D ~C4

�� ��
F
# r ~gmð4þ 9r ~gmÞ Ck kF.

We compute D by subtracting Ĉ2 and Ĉ
T

2 from C and
then adding Ĉ4 to the result. By a longish algebraic
manipulation we get

D̂ ¼ Dþ D ~D , (25)

where

D ~D
�� ��

F
# ðr ~gmð8þ 11r ~gmÞ þ u ð21þ 40 r ~g mÞÞ Ck kF#

r ~g 0
m Ck kF and the integer factor c in ~g 0

m is larger than in
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~gm. It is likely that tighter a priori bounds could be
achieved, but the result is enough to show normwise
numerical stability. However, small components might
not be computed to high relative accuracy.

III.D. Two Methods to Characterize Covariances

The proposed method cannot be applied if some of
the covariances have not been characterized, i.e., given
any values. This occurs when the evaluator has not been
able to determine how well the data are known and, when
using ENDF-6 Formats,4 also when the covariances are
evaluated as zeros and omitted. Prior to any use, including
detecting whether the covariances are consistent, the
required and missing covariances need to be character-
ized. We try two characterization methods: a simple one
and a heuristic one.

In both characterization methods covariances for
redundant pieces of nuclear data for which all covariances
are missing are calculated using the standard method
whenever their covariances are needed. For example, they
are not needed when using the alternative approach to
construct the sum rules.

In the simple characterization method, any other
missing covariances are characterized as zeros.

In the heuristic characterization method, covariances
for redundant pieces of nuclear data that have at least
some characterized covariances are characterized using
the propagation-of-errors formula, Eq. (14). Any other
missing covariances are characterized as zeros.

The difference between the characterization methods
is the treatment of covariances of redundant pieces of
nuclear data that have some but not all covariances
present. The heuristic characterization method gives
consistent covariances for redundant pieces of nuclear
data if their partials are properly characterized. The simple
characterization method gives consistent covariances only
if the covariances were omitted due to being zero.

IV. CALCULATIONS

We use a slightly modified NJOY 2012.8 (Ref. 1) to
process nuclear data in ENDF-6 Formats4 from the
ENDF/B-VII.1 nuclear data library14 into multigroup
covariances. We apply the method to three examples
where NJOY generates inconsistent multigroup covari-
ance matrices, given the precision of the data. That is, the
inconsistencies cannot be explained by roundoff. The
examples were selected to cover a variety of sum rules,
and to demonstrate a few properties of the two
characterization methods, and the proposed method for
finding the nearest consistent multigroup covariance
matrix. We do not imply that applying the proposed
method is necessarily the best way to handle the
inconsistencies in the examples.

All NJOY computations use a relative reconstruction
tolerance of 1025 and a temperature of 300 K. A Maxwell
þ1=E þ fission spectrum weight is used with a 0.1 eV
thermal break, 820.3 keV fission break, and 1.4 MeV
fission temperature. The module PURR is run with 40
bins and 80 ladders, when applicable. The covariances of
resonance parameters are processed in ERROR using
NJOY’s default 1% sensitivity method. The settings are
listed for reproducibility and should be considered only as
an example. We extract the covariances from ERROR in
their processing (double) precision, but note that the
original data are roughly in single precision only.

For each example, we run four cases: (A) using the
simple characterization method, (B) using the simple
characterization method and finding the nearest consistent
covariance matrix, (C) using the heuristic characterization
method, and (D) using the heuristic characterization method
and finding the nearest consistent covariance matrix.

IV.A. The Relative Covariances of Cross Sections of 94
40Zr

The first example is relative covariances of cross
sections of 94

40Zr. The evaluation contains covariances for
total, elastic scattering, inelastic scattering, radiative
capture, and neutron duplication cross sections. Therefore,
after applying either of the characterization methods, the
only sum rule for the covariances is

sn,t ¼ sn,el þ sn,inel þ sn,g þ sn,2n : (26)

The covariances are inconsistent with respect to the sum
rule in the whole energy range. We use the ECCO 33
group structure15 with the lowest boundary set to 1025 eV
and 20 MeV upper boundary added.

IV.B. The Absolute Covariances of Cross Sections of 5024Cr

The second example is absolute covariances of cross
sections of 50

24Cr. The evaluation contains covariances for
18 cross sections, 3 of which are redundant so that for the
covariances,

sn,t ¼ sn,el þ sn,non-el , (27a)

sn,non-el ¼ sn,inel þ sn,2n þ sn,g þ sn,p þ sn,d

þ sn,a þ sn,np þ sn,na , (27b)

and

sn,inel ¼
X6

i¼1

sn,n0
i
þ sn,nc , (27c)

after applying either of the characterization methods.
We use the VITAMIN-J 175 group structure15 augmented
with a 20-MeV upper boundary.
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The derivation rules in the evaluation mandate the
processing code to derive the covariances of the total
cross section using sn,t ¼ sn,el between 1025 eV and
0.783 MeV, the covariances of the elastic cross section
between 0.783 and 20 MeV using Eq. (27a), and the
covariances of the inelastic cross section between,
0.79881 and 20 MeV using Eq. (27b). The energy
0.79881 MeV is the threshold for the inelastic reaction.
These make the evaluation consistent with respect to the
sum rule Eq. (27a) above 0.783 MeV, the sum rule Eq.
(27b) above 0.79881 MeV, and the sum rule Eq. (27c)
below 0.79881 MeV, but otherwise the covariances are
inconsistent.

IV.C. The Absolute Covariances of Cross
Sections of 232

90Th

The third example is absolute covariances of cross
sections of 232

90Th. The evaluation contains covariances for
12 cross sections, 5 of which are lumped cross sections.
After applying either of the characterization methods, the
only sum rule for the covariances is

sn,t ¼ sn,n0
1
þ sn,el þ sn,any þ sn,3n þ sn,f þ sn,g

þ s1 þ s2 þ s3 þ s4 þ s5 , (28)

where the lumped cross sections sl, l ¼ 1, . . . ,5, are
defined as

s1 ¼ sn,2n þ sn,2na þ sn,2np , (29a)

s2 ¼
X10

i¼2

sn,n0
i
, (29b)

s3 ¼
X20

i¼11

sn,n0
i
, (29c)

s4 ¼
X39

i¼21

sn,n0
i
þ sn,n0c

þ sn,na þ sn,np , (29d)

and
s5 ¼ sn,p0 þ sn,pc þ sn,a0

þ sn,ac
: (29e)

We use the evaluator’s group structure between 1025 eV
and 20 MeV. The cases (A) and (C), and cases (B) and
(D), are identical for this example, since all covariances
are characterized by the evaluator.

The derivation rules in the evaluation mandate the
processing code to derive the covariances of the total
cross section in the whole energy interval using Eq. (28).
This should make the covariances described in MF 33
consistent. However, the covariances are not consistent in
the same energy interval as the covariances of the
resonance parameters (MF 32) are defined, i.e., below
0.1 MeV. Therefore, it seems that the description of
covariances of the resonance parameters or their proces-
sing cause the inconsistency.

V. RESULTS

V.A. Consistencies

We measure consistency by the fraction of absolute
sums to the sum of absolutes (see Sec. III.B). The largest
fractions for the example cases are tabulated in Table I.
Neither characterization method, cases (A) and (C),
creates consistent covariances. However, the computed
nearest consistent covariances, cases (B) and (D), are
consistent given the data, but not up to the full precision.
This highlights that with the described implementation of
finding the nearest consistent covariance matrix, there is
no need for a tighter criterion of consistency.

Many small inconsistencies were ignored in
Table I. For example in the 50

24Cr case (B), the ignored
component with the largest sum of absolutes has

TABLE I

Largest Fractions of Absolute Sums to Sums of Absolutes for Each Example Case and
Upper Limits of the Fraction for Consistencies*

94
40Zr

50
24Cr

232
90Th

Equation (26) (27a) (27b) (27c) (28)

Case (A) 1 1 1 1 1
Case (B) 4.8 £ 10214 1.4 £ 10210a 2.3 £ 10213a 5.7 £ 10214a 6.0 £ 1028a

Case (C) 1 1 1 1 1

Case (D) 1.8 £ 10214 1.4 £ 10211a 3.8 £ 10213a 6.8 £ 10214a 6.0 £ 1028a

gt 5.6 £ 10216 3.3 £ 10216 1.0 £ 10215 8.9 £ 10216 1.3 £ 10215

�gt 3.0 £ 1027 1.8 £ 1027 5.4 £ 1027 4.8 £ 1027 7.2 £ 1027

*All cases are inconsistent, but some cases are consistent given the precision of the data.
aSome small absolute sums were ignored.
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ŝ ¼ â ¼ 1:85 £ 10215 b2, when the largest sum of
absolutes of all components is 104 b2. Therefore, the
ignored component is clearly inconsistent, but unlikely to
cause much trouble.

It is possible to compute the precision of the data for
which it is consistent by the criterion in Eq. (20) with
s ¼ 0. The criterion would be fulfilled when the
covariances are consistent up to 16:0-digit precision.
The computed nearest consistent covariance matrices are
consistent up to 14:0-digit precision for 94

40Zr, and up to
10:3-digit precision for 5024Cr. The example of 23290Th shows
that with the described implementation, the roundoff error
can accumulate so that consistency only up to 8:3-digit
precision is achieved. The little better than single
precision consistency is the worst result that we have
observed. Note that results for 232

90Th are worse than for
94
40Zr, despite that the dimensions of its covariance matrix
are smaller than those of 94

40Zr.

V.B. Differences in the Characterization Methods

Among the examples, the two characterization
methods differ the most for 94

40Zr: the Frobenius norm
for the difference of the cases (A) and (C) is 0.1243, while
the Frobenius norms for the cases (A) and (C) are 0.8553
and 0.8643, respectively. The two characterization
methods are much less different for 50

24Cr: the Frobenius
norm of the difference is 0.5351 b2, while the Frobenius
norms for the cases (A) and (C), 182.8 b2, have six
common significant digits. For 232

90Th, the two character-
ization methods coincide, since the evaluator has
characterized all covariances.

The differences in the characterization methods can
be illustrated with Fig. 2. Figure 2 shows the covariances
using the heuristic characterization method, for which the
cross-reaction covariances with the redundant total cross
section have been derived using the propagation-of-errors
formula, since those were not characterized by the
evaluator. Note that covðsn,t,sn,gÞ and covðsn,t,sn,n0 Þ are
not zero but only small. Both characterization methods set
the other cross-reaction covariances to zero. The simple
characterization method sets the cross-reaction covariances
with the total cross section to zero, but otherwise the
covariances are identical.

The 94
40Zr case (D) is shown in Fig. 3. The case (B) is

qualitatively similar, but the absolute values of covari-
ances below about 105 keV are about half to two-thirds of
case (D). Case (B) also has a strong negative correlation
between elastic and inelastic scattering above the inelastic
scattering threshold energy. This feature is not present in
case (D).

Since the two characterization methods yield different
covariance matrices, their nearest consistent covariance
matrices are also different, and they modify the
covariances characterized by the evaluator differently.
We measure the change in the covariances characterized

by the evaluator by restricting the Frobenius norm to the
covariances that were characterized by the evaluator.
These are tabulated in Table II. To give scales, the
restricted Frobenius norms vary between 0.850 and 0.865
in all four cases for 94

40Zr. For
50
24Cr, the norm is 182.78 b2

in cases (A) and (C) and 143 b2 in cases (B) and (D),
within the digits shown. For 232

90Th the norm is 3.64 b2,
within the digits shown, in all cases.

The heuristic characterization method seems to
respect the evaluator’s characterization more than the
simple characterization method, as can be seen for the
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examples in Table II. The behavior seems stronger in
evaluations that lack covariances between different pieces
of nuclear data.

The heuristic characterization method seems to create
covariance matrices with more and larger negative
eigenvalues than the simple characterization method.
For the examples, this can be seen in Table III. The
behavior is understandable, since the heuristic character-
ization method does not make the block diagonal any
larger but introduces nonzero values to off-diagonal parts,
thereby reducing the diagonal dominance of the covari-
ance matrices.

V.C. Changes by the Proposed Method

Finding the nearest consistent covariance matrix
changes inconsistent parts of the covariances. Figures 2
and 3 show that the main changes of 9440Zr from case (C) to
(D) are the increase in intrareaction covariances of the
total cross section below about 105 eV, a reduction of
intrareaction covariances of the elastic scattering cross
section in the same energies, and a reduction of the cross-

reaction covariance between these reactions in the same
energies. From case (A) to (B), the changes are

qualitatively similar, except stronger in magnitude. Also
the cross-reaction covariance between the total and elastic
scattering cross sections increases instead of decreasing,
since it was originally characterized as zero in case (A).
Changes in 50

24Cr and
232
90Th are qualitatively similar, but

more complicated due to a larger number of pieces of
nuclear data with covariances.

Figure 4 shows the relative changes in variances of
cross sections of 94

40Zr. The variances change little for the
cross sections of inelastic scattering, neutron duplication,
and radiative capture. The reduction of variances of elastic
scattering from case (A) to (B) is over two-thirds, while it
is less than one-third from case (C) to (D) below about 105

eV. In the same energy region, the variances of total cross

section increase from zero in both changes, giving the
100% (capped) relative change. Above about 105 eV, the
variances actually increase from case (C) to (D), but
decrease from case (A) to (B).

Figure 5 shows the relative changes in selected
variances of cross sections of 50

24Cr. The main changes are

TABLE II

Restricted Frobenius Norms of Differences*

Difference Between 94
40Zr

50
24Cr b2

� �
232
90Th b2

� �

Case (A) and (B) 6.114 £ 1022 111.6 5.436 £ 1022

Case (C) and (D) 3.911 £ 1022 111.6a 5.436 £ 1022

*See text for scales.
aSmaller only in the sixth decimal.

TABLE III

Chosen Eigenvalues of the Covariance Matrices of the Examples

94
40Zr Smallest Eigenvalue Negative Eigenvalues Zero Eigenvaluesa

Case (A) 21.094 £ 1028 5 112
Case (B) 29.314 £ 10214 1 123
Case (C) 22.263 £ 1022 21 101

Case (D) 24.442 £ 1024 14 116

50
24Cr Smallest Eigenvalue (b2) Negative Eigenvalues Zero Eigenvaluesa

Case (A) 28.836 £ 1028 2 2277
Case (B) 27.781 £ 1028 1 2395
Case (C) 21.218 £ 1021 139 2136

Case (D) 27.335 £ 1022 53 2393

232
90Th Negative Eigenvalues Zero Eigenvaluesa

Cases (A) and (C) 0 265
Cases (B) and (D) 0 280

aIndistinguishable from zero.16
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the two-thirds reduction in variances of total cross section
below about 103 eV, the about one-third increase of
variances of elastic scattering cross section between 1021

and 105 eV, and an about 50% or 80% decrease in the
variances of radiative capture cross section below about
1 eV, depending on the characterization method. Inter-
estingly, in the energy group between 2.358 £ 104 and
2.412 £ 104 eV, the variance of the radiative capture

changes much less than in the neighboring energy
groups. The changes in the variances omitted from
Fig. 5 occur only in the high energies, mostly above
5 £ 105 eV.

Figure 6 shows the relative changes in selected
variances of cross sections of 232

90Th. Since the covariance
matrix is inconsistent only below 105 eV, there are no
changes above 105 eV except those caused by rounding
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errors. An example of those is in the energy group
between 2.2536 and 1.7901 MeV for the lumped reaction
number 5: the variance of the cross section increases
from 7.188 £ 1027 to 3.933 £ 1026 b2, or by 447%.
Otherwise, the largest relative changes are in the variances
of the fission reaction, for which the cross section was
evaluated as exactly known below 105 eV, even though
the fission cross section is nonzero in the region. Also the
variances of radiative capture are increased, while
variances of elastic scattering and total cross section are
reduced by about 10%. The changes in the variances
omitted from Fig. 6 are small.

The proposed method seems to shift some eigen-
values to zero. For the example cases, this can be seen in
Table III. This is expected, since some of the zero
eigenvalues contain information that the covariances are
consistent. The shifted eigenvalues might originally have
been either negative or positive.

The only originally positive semidefinite example is
thorium, and for it the proposed method preserved
positive semidefiniteness. However, rounding errors might
damage positive semidefiniteness.

VI. DISCUSSION

Inconsistent covariance matrices are a result of either
unphysical data, or errors in the processing codes, or
rounding errors. The example of 94

40Zr contains unphysical
covariances, whereas the inconsistencies in the examples
of 50

24Cr and
232
90Th might originate from the evaluation or

the processing code: some issues with covariances of
resonance parameters of 232

90Th have been observed.17

Generally both error types should be corrected, rather than
finding a nearest consistent covariance matrix. However,
when a small correction is enough to make the data
consistent, the correction might be justified. In any case,
the method to detect inconsistent nuclear data can be used
as a part of a quality assurance procedure.

The proposed method is not conservative in the sense
that it might reduce variances, and when used prior to
uncertainty analysis it is likely to give smaller variances
than using the standard method. However, use of the
standard method unnecessarily overestimates the
uncertainty.

The proposed method gives different results when
applied to relative or absolute covariances, since the
method minimizes the changes of the relative or absolute
entries. In both cases, the same relative change for values
farther from zero is larger in distance than for values
closer to zero. Therefore, small (absolute) entries are
likely to be changed more. Since absolute covariances are
not scale free, covariances whose multigroup constant are
small are likely to be changed more than those whose
multigroup constants are not small.

The practical implementation of the proposed method
has some room for improvement, although the used

criterion for consistency is tight. There are at least two

modifications that might give better numerical behavior:

applying the sum rules groupwise, thereby reducing the

dimensions of the sum rule matrix; and using Givens

rotations instead of Householder transformations, thereby

exploiting the special band structure of the null vectors.

If needed, the null vectors can also be arranged so that

they are lower trapezoidal. It should be noted that Vþ is

easy to calculate analytically for single sum rules, but

forming U, or Uþ from these is not trivial.
Applying the heuristic characterization method

groupwise might improve its performance. This might

give realistic estimates for the covariances that the

evaluator has characterized only partially. For example,

the low energy part of the covariance of the total cross

section of the zirconium example and the low energy part

of the covariance of the fission cross section of the

thorium example might have been realistically character-

ized by applying the heuristic method groupwise.
The proposed method is intended for evaluations

whose covariances have been characterized. If there are

many uncharacterized covariances, a more natural

approach is to use the remaining degrees of freedom so

that the covariances are characterized in a consistent

manner. We leave finding such method as future work.

Finding the solution to the nearness problem in Sec. II.D

using a more general norm might give such a method or

an approximation of such a method. However, the

approach will not work in cases where there are not

enough degrees of freedom left to make the covariances

consistent, in which case one must modify some of the

covariances characterized by the evaluator.
The lumped cross sections in the example of thorium

are an illustration of the cases for which the obvious

approach in constructing sum rules will fail. The obvious

approach requires propagating covariances for the inelas-

tic cross section by summing its partials. The lumped

covariances in Eqs. (29b), (29c), and (29d) contain the

partials, but Eq. (29d) contains also covariances of sn,na

and sn,np. Since the covariances of sn,na and sn,np are not

in the evaluation, their contributions cannot be separated.

Therefore, the covariances for the inelastic cross section

cannot be formed. While the alternative approach does not

have any problems with the example of thorium, one

should avoid lumping covariances for pieces of nuclear

data that are not direct partials of the same piece of

redundant nuclear data.
The proposed method can be applied to covariances

of intramaterial multigroup quantities. Application to

cross-material covariances can be constructed, with some

effort, using the described null vectors and projectors as

building blocks. With reinterpretation the proposed

method can be used with MF 31 and 33 covariances,

but it is not directly applicable to covariances of resonance

parameters, i.e., MF 32.
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The proposed method can also be applied to find the
nearest normalized covariance matrix for a probability
distribution, e.g., covariances for energy distributions of
secondary particles. The null vectors are y ¼ ½1, . . . ,1�T

for absolute covariances and y ¼ ½p1, . . . ,pg�
T
for relative

covariances, where the components of p are the
probability distribution. These yield different formulas
than the correction proposed in ENDF-6 Formats Manual
(Ref. 4, Chapter 35.3) for covariances for energy
distributions of secondary particles.

VII. CONCLUSIONS

An apparently new method to find a nearest
symmetric matrix with given null vectors has been
introduced and applied to find the nearest consistent
multigroup covariance matrix with respect to the sum
rules of redundant nuclear data. It has been demonstrated
that a practical implementation is possible and that the
practical implementation gives satisfactory, but improva-
ble, results.

If the covariances cannot be easily interpreted so that
they are consistent, there is some ambiguity in the
covariances that are not characterized, i.e., given some
values. Neither the simple nor the heuristic characteriz-
ation method outperforms the other. The covariances
given by the simple characterization method seems to
have less and smaller negative eigenvalues, but they seem
to be farther from consistency than the covariances given
by the heuristic characterization method.

Merely using a method to detect inconsistent
covariances would be a valuable addition to programs
that generate multigroup covariance matrices. It could be
used as a part of a quality assurance program. The
programs might benefit from having an option to choose
either of the two characterization methods, and from an
option to use the proposed method to find the nearest
consistent multigroup covariance matrix.

ACKNOWLEDGMENTS

The author thanks P. Aarnio, J. Ala-Heikkilä, and E. Dorval
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a b  s  t r a  c  t

We present conditions  for  covariances of energy  dependent  nuclear data  to  be  proper in the sense that

the  covariances are  positive,  i.e.,  its  eigenvalues  are  non-negative, and  consistent with respect to the  sum

rules of nuclear  data. For the  ENDF-6  format covariances we  present methods  to detect non-positive  and

inconsistent covariances.  These methods  would  be  useful as  a part of a quality assurance  program.

We  also propose  methods  that  can  be  used  to find  nearby  more  proper energy  dependent  covariances.

These  methods  can  be used  to  remove  unphysical components,  while preserving most  of the  physical

components.  We consider  several  different senses in which the  nearness can  be  measured. These  methods

could  be useful  if  a re-evaluation  of improper covariances  is not  feasible.

Two  practical examples  are processed  and  analyzed. These  demonstrate some of  the properties of  the

methods.

We  also demonstrate  that  the  ENDF-6 format  covariances of linearly  dependent nuclear  data  should

usually be  encoded  with the derivation rules.

© 2015 Elsevier  B.V.  All  rights  reserved.

1. Introduction

The true values of physical quantities are never known (Cacuci

and Ionescu-Bujor, 2010). Therefore, physical quantities need to be

expressed as probability distributions that describe our knowledge

of the physical quantities. In the  practical application of evalu-

ated nuclear data files, only the  best-estimates and most of the

covariances of the probability distributions are  included. These are

an approximation of  the evaluator’s knowledge of nuclear data. In

some cases the covariances are  improper in the  sense that they are

not positive, i.e., some of the eigenvalues are negative, or incon-

sistent with the sum rules of nuclear data. The conditions are

equivalent to the best-estimates of  physically positive quantities to

be negative, or any quantity being inconsistent with  the sum rules.

∗ Tel.: +358 504331135.

E-mail address: risto.vanhanen@aalto.fi

The users of evaluated nuclear data files should, at the very least,

be aware if the file contains improper data. This article addresses

only the covariance data.

The  issue of non-positive covariances has been raised by the

low-fidelity covariance project (Little et al.,  2008), and in the  con-

text of multigroup covariance matrices by  Kodeli (2005), Mattoon

and Obložinský (2011), and Vanhanen (2015b). Both Kodeli, and

Mattoon and Obložinský provided a program to  classify cer-

tain multigroup covariance matrices, and Vanhanen presented a

method to verify positive semidefinity of  arbitrary multigroup

covariance matrices. For sufficiently improper multigroup covari-

ance matrices, Vanhanen also proposed to use  a method by

Higham (1988) to find the  nearest positive semidefinite multi-

group covariance matrix in  the Frobenius norm. In the  context of

covariance matrices of  resonance parameters, Žerovnik et al. (2014)

proposed to  use a method by Higham (2002) to find the near-

est correlation matrix of resonance parameters in the Frobenius

norm.

http://dx.doi.org/10.1016/j.nucengdes.2015.11.026

0029-5493/© 2015 Elsevier B.V. All rights reserved.
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The issue of inconsistency with respect to the sum rules of

nuclear data has received less  attention. The zero eigenvalues due

to consistency have been identified by  Smith (2011) and Smith and

Otuka (2012), and in the context of  multigroup covariance matri-

ces by Vanhanen (2015a). Vanhanen presented a method to verify

consistency of  intra-material multigroup covariance matrices, and

provided a method to find the nearest consistent covariance matrix

in the Frobenius norm.

In  this paper we consider covariances of energy dependent

nuclear data, and present conditions for  them to be positive and

consistent with  the sum rules of  nuclear data. We  show that for

most of the covariances encoded in the ENDF-6 format (Trkov

et al., 2012), the properties can  be  checked using the correspond-

ing methods for multigroup covariance matrices. These methods

can be used as a  part of  a  quality assurance program.

In this paper we also propose that weighting should be  used if

nearby covariances or  the nearest covariance matrices are sought.

For this, we present how our earlier methods to find the  near-

est positive semidefinite and consistent covariance matrices in

the Frobenius norm (Vanhanen, 2015a,b) can be modified to use

weighted Frobenius norms. We will  demonstrate a  few practical

weighted norms, some  of which have a physical interpretation.

The  users of evaluated nuclear data files can use these methods

to remove unphysical parts of covariances, while preserving most

of the useful information.

The  rest of the paper is organized as  follows: theory is presented

and implementation details are described in Section 2. Two test

cases are described in  Section 3 and their results analyzed in Sec-

tion 4. The methods are discussed in Section 5 and the  paper is

concluded in Section 6.

2. Theory and implementation

2.1.  Energy dependent nuclear data

2.1.1. Uncertainties of parameters of nuclear data

Nuclear data are uncertain, since the  true nuclear data are not

known. We  consider energy dependent nuclear data to  depend,

in principle and many times in practice, on a finite number of

underlying nuclear data,  ̌ ∈  R
k. The underlying nuclear data might

be resonance parameters, 2200 m/s  cross sections  or some other

parameters which define the  energy dependent nuclear data. The

uncertainty in nuclear data should be understood in terms of the

Bayesian probability interpretation. The subjective knowledge of

the underlying nuclear data can then be represented as a joint

probability

p(ˇ1,  . . ., ˇk)dˇ1·  ·  ·dˇk (1)

that  the true value of each piece of the underlying nuclear data is

between ˇi and ˇi + dˇi for  each i = 1, .  . .,  k  simultaneously (Trkov

et al., 2012). The expectation operator E [ · ] over the knowledge of

the underlying nuclear data is defined as
∫

·  p(ˇ)dˇ.

We require a  finite number of parameters since the notion

of probability density for uncountable sets is not as  straight-

forward as for finite dimensional sets (Delaigle and Hall,

2010 and references therein). Alternatively, one could con-

sider the energy dependent nuclear data as random functions

of energy1 (Blanc-Lapierre and Fortet, 1967). Both approaches

lead to the same conclusions for the ENDF-6 format nuclear

data.

1 Random functions of time are usually referred to as stochastic processes.

2.1.2. Uncertainties of energy dependent nuclear data

A piece of  energy dependent nuclear data, xi :  R
+ × R

k → R,  is  a

function of energy and the underlying nuclear data. For example,

these can be  average cosine of  the  scattering angle in  the laboratory

frame for elastic scattering, or average numbers of neutrons emit-

ted from fission. We  assume that in  total, from all materials, there

are n  pieces of energy dependent nuclear data, and concatenate

them into a vector x  = (x1, .  . ., xn)�.

Under favorable conditions the  first two  moments of energy

dependent nuclear data over the  underlying nuclear data exist. The

first moments,

x̂i(E) = E  [xi(E;  ˇ)], (2)

can  also be  concatented into a vector

x̂(E)  = E  [x(E; ˇ)] =  (x̂1(E), . . ., x̂n(E))
�

. (3)

They are also referred to  as the  best-estimates.

The second central moments, i.e.,  covariances,

kij(E, E′) = E  [xi(E; ˇ)xj(E
′;  ˇ)] − x̂i(E)x̂j(E

′),  (4)

describe the uncertainties in  the energy dependent nuclear data.

The covariance kij(E, E′) is sometimes written  as cov  (xi(E), xj(E
′)).

We require that the covariances belong to the normed linear spaces

with the  norms ‖kij‖
2
ij

=
∫  ∫

|kij(E, E′)|2dE′dE. The direct sum of the

normed linear spaces of the covariances is a normed linear space.

Its elements can be  conveniently represented as the  matrices

k(E, E′) = E  [x(E;  ˇ)x(E′;  ˇ)
�

]  − x̂(E)x̂(E′)�

=

⎡
⎢⎢⎢⎣

k11(E,  E′) · ·  · k1n(E,  E′)

...
. . .

...

kn1(E,  E′) · ·  · knn(E, E′)

⎤
⎥⎥⎥⎦

(5)

that  can be added together and multiplied by  scalars. We  set  the

norm to be ‖k‖2 =
∑

i,j
‖kij(E,  E′)‖2

ij
.  Also  the  higher order moments

contain information about the  uncertainty, but they are beyond the

scope of  this article.

2.1.3.  Covariance operator of nuclear data

We consider the covariance operator of nuclear data to  act on

energy dependent sensitivities s that are elements of a complete

inner product space Hs.  The sensitivities can be partitioned for each

piece of nuclear data so that s = (s1,  . .  ., sn)�. We  denote the inner

product
∫

s(E)�t(E)dE for  s,  t ∈  Hs by the brackets 〈s, t〉.

The covariance operator of nuclear data maps an element from

Hs to the  same space by (Cs)(E) =
∫

k(E, E′)s(E′)dE′. The kernel is

symmetric, which makes the operator self-adjoint.

The covariance operator should have  at least two properties:

positivity2 and consistency with respect to  the sum rules. The

former property can be stated as

〈Cs, s〉 ≥ 0 (6a)

for  all sensitivities s  ∈ Hs. This is a generalization of the require-

ment that the variances should be non-negative. The requirement

also guarantees that first  order uncertainty propagation will  not

yield negative variances as results. The latter property can be stated

as

n∑
i=1

cikij = 0  (6b)

2 The property is sometimes referred to as  non-negativity.
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for all linearly dependent nuclear data,
∑n

i=1
cixi = 0, where the

coefficients ci are defined to match the sum rules of nuclear

data. The requirement is  analogous to  the  requirement that best-

estimate nuclear data must be consistent with the  sum rules. If this

requirement is not satisfied, the results of even simple calculations

depend on which constituents of redundant data are used in the

formulation of the problem.

2.2.  A specific representation for the covariance operator

In many cases the kernel of the covariance operator is rep-

resented as a sum of functions that are absolutely or  relatively

piecewise constant in energy boxes. The energy boxes are defined

for an energy grid {Ek}
g+1

k=1
: a pair of energies, (E, E′) belongs to (k,

l)-th energy box if E ∈ [Ek,  Ek+1) and E′ ∈ [El, El+1) simultaneously.

For  example, the most of the energy dependent covariances of

the ENDF-6 format (MFs 31, 33, and 35; LBs 0  through 7)  can be

described in this way. The kernel of the covariance operator is  then

represented as

kij(E, E′) =

∑
k,l

aijklIk(E)Il(E
′) +

∑
k,l

bijklx̂i(E)x̂j(E
′)Ik(E)Il(E

′) (7)

where Ik(E) is one if E is in  [Ek, Ek+1) and zero otherwise.

Note  that one cannot represent an arbitrary covariance operator

in the form of Eq. (7), but only a subset of finite  rank operators.

2.2.1. Positivity

The  requirement of positivity, Eq.  (6a), for  the specific represen-

tation can be expressed in  the form∑
i,j,k,l

[
aijklsi,ksj,l�Ek�El +  bijklx̂i,kx̂j,l s̃i,ks̃j,l�Ek�El

]
≥ 0, (8)

where, in energy region k,  si,k is the  unweighted average sensitivity,∫
ksi(E)dE/

∫
kdE, s̃i,k is  the  best-estimate weighted average sen-

sitivity,
∫

k
si(E)x̂i(E)dE/

∫
k

x̂i(E)dE, x̂i,k is the unweighted average

best-estimate,
∫

k
x̂i(E)dE/

∫
k

dE,  and �Ek = Ek+1 − Ek is the energy-

interval. This condition must hold for  all sensitivities. Collecting

some of the variables into the vectors, si = (si,1, . . .,  si,g)�, s̃i =

(s̃i,1,  . . ., s̃i,g)�, x̂i = (x̂i,1,  . . ., x̂i,g)
�

and �E = (�E1, . . .,  �Eg)�, this

can be expressed more compactly as the inequality

s�DADs + s̃�DX̂BX̂Ds̃ ≥  0, (9)

where the matrices A(i−1)g+k,(j−1)g+l = aijkl and B(i−1)g+k,(j−1)g+l = bijkl

contain the information from the  operator, the diagonal matrices

diag(D) = (�E, . . .,  �E) and diag(X̂) = (x̂1,  .  .  ., x̂n) act as  scales, and

the vectors s = (s1, . . .,  sn)� and s̃ = (s̃1,  . . ., s̃n)� contain the infor-

mation  from the sensitivities.

A  sufficient condition for Eq. (9)  to hold is that both terms  in the

sum are non-negative. That is, a  sufficient condition for positivity of

covariances is that both the matrices A  and B  are positive semidef-

inite. Positive semidefinity can  be  tested by the same method that

can be used for multigroup covariance matrices (Vanhanen, 2015b).

The condition can be used  to  prove that a  covariance operator is

positive.

A necessary condition for  Eq. (9)  to  hold is that the matrix

A + X̂BX̂ is  positive. This condition emerges, since for  a given sen-

sitivity one can always choose another sensitivity that preserves

the unweighted average and whose unweighted average is equal

to the best-estimate weighted average. The condition can be  used

to prove that a covariance operator is not positive by  showing that

the covariance operator violates the  condition.

The necessary and sufficient conditions coincide if either the

absolute or the relative component in the covariances is zero. This

is not an uncommon situation. Also, there are covariance operators

that  cannot be classified by either of the above conditions. For these

one must use an other approach.

2.2.2.  Consistency with the sum rules

The requirement of consistency with respect to  the sum rules,

Eq. (6b), for the specific representation can be expressed in the form

n∑
i=1

ci

[
aijkl + bijklx̂ix̂j

]
= 0,  (10)

for all k  and l.

A  sufficient condition for Eq.  (10) to  hold is that

n∑
i=1

ci

[
aijkl + bijklx̂i(E)x̂j(E

′)
]

= 0 (11)

holds for  all j,  E and E′.  However, this  is  impractical to verify numer-

ically, since  one should compute the sum for all energy pairs.

Therefore, in practice, one needs to settle for a less strict condition.

A necessary condition for Eq. (10) to hold, is that

n∑
i=1

ci

[
aijkl�Ek�El + bijklx̂i,kx̂j,l�Ek�El

]
= 0.  (12)

This weaker condition is obtained by integrating Eq. (10) over the

(k, l)-th  energy box. The criterion can be  made tighter by introduc-

ing additional energies to the energy grid.  Dividing by �Ek�El, the

equation can be  expressed more  compactly as

[A + X̂BX̂]v = 0,  (13)

where v = [c1,  . . ., cn]� ⊗ el , el is the l-th Cartesian basis vector of g

dimensional real space and the Kronecker product is  denoted by ·

⊗ · . This  condition can be tested by  essentially the same method

that can be used test a  similar condition for multigroup covariance

matrices (Vanhanen, 2015a).

The necessary and sufficient  conditions coincide if all best-

estimates are  piece-wise constant on the  energy grid.  However,

this is not a typical situation.

2.3.  Finding a nearby more proper covariance operator

The preceding methods can be used to  identify whether a covari-

ance operator in the specific representation is not  proper, that is,

whether the covariance operator is not positive or  is inconsistent

with the sum rules. If a covariance operator is not proper and a  re-

evaluation is  not possible or  feasible, it  might be acceptable to find

a nearest covariance operator from which the improper parts have

been removed.

While the improper covariance operator can be expressed using

the specific representation, it might be that  a nearest covariance

operator cannot be  expressed using the specific representation.

Therefore,  we propose that only a nearby more proper covariance

operator in a fixed energy grid  should be sought.

This can be done, for example, by finding a nearest positive

semidefinite or consistent covariance matrix to  the matrix A  + X̂BX̂ ,

so that  the  results will  fulfill the  necessary conditions. However, the

results might not be proper covariances, but only more proper cova-

riances. Also, the  approach preserves information about absolute

and relative components only if either A or B are zero.

It is  also possible to find the nearest positive semidefinite

matrices A  andX̂BX̂ separately,  thereby ensuring that the sufficient

conditions for positivity are fulfilled. However, the  approach might

cause larger  than necessary changes.

In the specific representation, it  is  not  always possible to  find sat-

isfactory nearby covariances that would fulfill the sufficient crite-

rion for consistency. Consider a material like natural carbon, whose
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essential low energy cross sections are constant elastic scattering,

1/v  capture and total as their sum, and consider the  condition for

elastic scattering as  quantity j in a low energy box (k, l).  Since elastic

scattering has a constant cross section we can  assume, without loss

of generality, that aijkl ≡ 0. Now, in  a low energy box (k, l), either

bs,t,k,l =  bs,s,k,l = bs,� ,k,l or Eq. (10)  holds for  at most a  single energy.

Therefore, while it is technically possible to find nearby consistent

covariances, the specific representation might be too restricting to

allow setting the covariances rather freely and still  respecting the

sum rules.

This technical obstacle can  be ignored by allowing more freedom

in specifying the covariances. In the  ENDF-6 format, for example,

one can specify that covariances for a  piece of nuclear data should

be derived from other pieces by a given derivation rule. This  makes

the energy dependent covariances, by definition, consistent.

We  will proceed with these approaches for  a  class of weighted

norms.

2.3.1. Weighted Frobenius norms

Let C ∈ R
m×m.  The weighted Frobenius norms are defined by

‖C‖W = ‖W1/2CW1/2‖F , (14)

where W is required to be positive definite, and ‖C‖F =
∑

i,j
c2

ij
is

the Frobenius norm.

2.3.2.  A nearest positive semidefinite matrix

Higham (2002) proves the following result:

Let C  ∈ R
m×m be symmetric. The unique nearest positive

semidefinite matrix Cpsd,W in  the weighted Frobenius norm is

Cpsd,W =  W−1/2X̃ max(�̃,  0)X̃�W−1/2 (15)

where X̃�̃X̃� is the eigendecomposition of the weighted matrix

C̃  = W1/2CW1/2 and max(�̃,  0)  contains the eigenvalues of the

weighted matrix with negative eigenvalues replaced by zeros.

In  practice, one can form the  weighted matrix, C̃,  compute

the nearest positive semidefinite matrix in the unweighted Frobe-

nius norm and scale the  results  back by  pre- and post-multiplying

X̃ max(�̃, 0)X̃� by W−1/2.  Vanhanen (2015b) presented a  practical

implementation without scaling.

2.3.3. A nearest symmetric matrix with specified null vectors

Vanhanen (2015a) proves the following:

Let C ∈ R
m×m be symmetric, and U ∈  R

m×n contain the spec-

ified null vectors as  its columns. The unique nearest symmetric

matrix with the specified null vectors in the Frobenius norm is

Cs,snv = PCP, (16)

where P = (I −  UU+)  and U+ is the  (Moore–Penrose) generalized

inverse of U.

The  results can be generalized for  the  weighted Frobenius norm,

giving the following result: the unique nearest symmetric matrix

with the specified null vectors in the weighted Frobenius norm  is

Cs,snv,W = W−1/2P̃C̃P̃W−1/2, (17)

where P̃ = (I − ŨŨ+), C̃  = W1/2CW1/2 and Ũ = W−1/2U.

Proof. The original problem is to find the symmetric X  ∈

R
m×m that is the smallest in the Frobenius norm and for

which (C + X)U =  0.  The equality requirement is identical to

(W1/2CW1/2 + W1/2XW1/2)W−1/2U = 0, i.e., (C̃ + X̃)Ũ  = 0, where the

tilded quantities are weighted matrices. Now,  finding the nearest

symmetric matrix to C̃  with the  specified null  vectors Ũ gives  the

difference X̃ whose Frobenius norm is the  smallest. Now ‖X̃‖F =

‖W1/2XW1/2
‖F =  ‖X‖W ,  so the  changes in the  original problem are

the smallest in the weighted Frobenius norm.�

In  practice, one can form the  weighted matrices W1/2CW1/2 and

W−1/2U, compute the  nearest symmetric matrix with the  specified

null vectors in  the unweighted Frobenius norm and scale the  results

back by pre- and post-multiplying P̃C̃P̃  by W−1/2. Vanhanen (2015a)

presented a practical implementation without scaling.

2.3.4. Practical weighted Frobenius norms

The previous considerations make it possible to choose  in  which

sense the changes to covariances are minimized. The choice is not

completely free, since we  can only choose from the  weighted Frobe-

nius norms.

We  consider eight diagonal norms, whose weights are:

W1/2 = I, (18a)

W1/2 = |X̂|−1, (18b)

W1/2 = |T |−1, (18c)

W1/2 =  D, (18d)

W1/2 = |X̂|−1D, (18e)

W1/2 = |T |−1D, (18f)

W1/2 = �, and (18g)

W1/2 =  |S|. (18h)

Here, on their diagonals, X̂ contains the unweighted average

best-estimate nuclear data, T contains the  unmodified standard

deviations of nuclear data, D  contains the energy-intervals, � con-

tains the neutron flux spectrum in a  system, and S  contains the

averaged sensitivity profile for a response. We  refer to these as  (A)

to (H) -weights and -norms. It is  possible to  construct other norms.

The weights (A) and (B)  correspond to absolute and relative

cases considered in earlier articles (Vanhanen, 2015a,b), when

the best-estimates are  positive. The weight (C) minimizes the

differences in  correlation coefficients, but does not force  the  vari-

ances to be preserved. This allows deflation of negative variances

(Vanhanen, 2015b).

The  weights (D)  through (F) are the first three weights with

additional energy-interval weighting. The weighting by energy-

intervals is quite natural by  the original inner product, and can also

be interpreted as a flat-flux weight. The energy-interval weights

have the additional advantage that augmenting the  energy grid by

an energy does  not double the effective weight of the split  energy-

interval. However, since the  energy-intervals vary by  orders of

magnitude the  scaling might cause numerical problems.

The weights (A) through (F) can be used  with the data on nuclear

data files, but  the weights (G) and (H) require additional data.

This makes them system- and response-specific, thereby producing

more proper covariances only for  specific applications. The weight

(G) is a  generalization of the weight (D), since it  allows an  arbitrary

flux weight instead of the flat-flux weight. Naturally the  energy-

interval weighting can be  replaced by flux weighting also in the

weights (E)  and (F). Conceptually the weight (H) tries to  minimize

changes for  a certain response, whose sensitivity profile is con-

tained in S. For  certain responses the weight (G) is an approximation

of the  weight (H). If it  were possible to  use S in place of |S|, the  weight

would minimize the change in variance of the  response. However,

if the sensitivity profile or flux  is zero at some energy-interval, the

weight cannot be used directly.

There  is  a  practical situation where the inverse-best-estimate

weights,  (B) and (E),  and inverse-standard-deviation weights, (C)

and (F),  cannot be used directly: if the  best-estimate or standard-

deviation is evaluated as zero, its inverse cannot be used in the

weights.

If the best-estimate is zero, but the standard-deviation is non-

zero, the most likely explanation is that the evaluator suspects, but
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is not certain, that the best-estimate is zero. In such  a case we use

the standard deviation in lieu of the best-estimate in the weight,

giving a proper order-of-magnitude. An example case is a threshold

cross section right below the  threshold.

If the standard-deviation is zero, but the  best-estimate is  non-

zero, the most likely explanation is that the evaluator has  not been

able to estimate how well the  piece of nuclear data is known. In such

a case we use a large number times the best-estimate in lieu of the

standard-deviation in the weight. The inverse of the  large number

in the weight makes it relatively inexpensive to change the data, so

that the methods do not try to  preserve the unevaluated variance

and its covariances. The scaling by  best-estimate gives the weight

a proper order-of-magnitude. In practice we use inverse of square

root of machine epsilon as  the large number.

If both of these are zero, the most likely explanation is that the

evaluator knows with certainty that the best-estimate is zero. A

usual case is a threshold cross section far below the threshold. In

such a case we set the weight and its inverse to zero. While this

technically makes the norm a seminorm, practically it reduces the

dimensions of the covariances to which the correction is  applied

to.

3. Calculations

We  use a slightly modified NJOY 2012.50 (Kahler et al., 2012) to

extract data for the averaged best-estimates and the specific rep-

resentation, Eq. (7), of the covariances. We  apply the methods to

two examples where NJOY extracts either non-positive or incon-

sistent covariances, given the precision of the  data. That is, the

non-positivity and inconsistency cannot be explained by roundoff

error. The examples were selected to demonstrate a few proper-

ties of the weights and methods. We  do not imply that applying

the proposed method is necessarily the best way  to handle the

non-positivity and inconsistency in the  examples.

All NJOY computations use relative reconstruction tolerance

of 10−5,  temperature of 0 K and flat-flux weight. We  extract the

covariances from ERRORR in their processing (double) precision,

but note that the original data is roughly in single precision

only.

The first example is covariances of cross sections of 4
2
He from  the

low-fidelity covariance project (Little et al., 2008). The covariances

are used with best-estimates from  the ENDF/B-VII.0 (Chadwick

et al., 2006) evaluation. The material can only interact by  elas-

tic scattering in the evaluated energy region, and therefore the

total and elastic scattering cross sections are identical. The absolute

component of the covariances is zero. The low-fidelity covarian-

ces require the covariances of elastic scattering to be derived from

covariances of total cross section, which makes them identical.

Therefore the sum rules hold for the  covariances. However, the

covariances contain two negative eigenvalues. We  will find the

nearest positive covariances using the norms (A) through (F) in

the evaluator’s energy grid. We  will also comment on how the

methods would behave on a finer energy grid, which we construct

by augmenting the evaluator’s energy grid by ten equal lethargy

energy-intervals between 10−5 eV  and 20 MeV.

The  second example is  covariances of cross sections of 238
92

U from

the JEFF-3.2 (OECD/NEA Data Bank, 2015) evaluation. The mate-

rial has covariances for cross sections of total, elastic scattering,

fission and radiative capture. The covariances have only been eval-

uated below 40.9 keV, but the covariances include all cross-reaction

covariances between the listed cross sections. The absolute compo-

nent of the covariances is zero. We  assume that  other covariances

are zero, and therefore the only sum rule for the covariances is

�n,t = �n,e + �n,f + �n,� . (19)

On the  evaluator’s energy grid the covariances are inconsistent with

respect to  this sum rule, and they contain a negative eigenvalue.

We will  find the nearest more consistent covariances using the

norms (A)  through (C) that will fulfill the necessary condition of Eq.

(12). We  will not  deflate the  negative eigenvalue. We  will increase

the energy resolution of the method by splitting each evaluator’s

energy-interval into two  equal lethargy energy-intervals. Theoret-

ically the energy-interval weighting does not have an  effect here,

so the norms (D) through (F) should give identical results to  the

norms (A)  through (C), respectively.

4. Results

4.1. Covariances of  cross sections of 4
2
He

The weights for 4
2
He are illustrated in Fig. 1. The weight (A) is

unity for all energy-intervals. The weights (B) and (C) have the

largest value on the energy-interval with the lowest energies, and

their graphs coincide up  to  500 keV. This occurs because the rela-

tive standard deviation is constant in the  region. The weights (D)

through (F) are scaled from the weights (A)  through (C), respec-

tively, by the weight (D). For this particular case the  energy-interval

scaling causes only small differences, since the widest energy-

interval is only about 100 times the narrowest energy-interval: 0.1

vs. 10 MeV. In the augmented energy grid  the narrowest energy-

interval is  only 1.6 ×  10−4 eV – ten orders of magnitude less than the

widest energy-interval. Therefore we expect numerical problems

with the augmented energy grid and flat-flux weights.

The low-fidelity covariances of total cross section, elastic

scattering cross section and their cross-reaction covariances are

identical. After applying the method, maximum relative differences

are at most 4 ×  10−11% for the weights (A)  through (C), and at most

3 ×  10−9%  for  the weights (D) through (F). The factor of 100 is appar-

ent here. Therefore, the method retains the equality, and thereby

the consistency with respect to  the sum rules, only approximatively

but quite well. In the augmented energy grid the maximum rela-

tive difference of 1 ×  10−4% occurs for the weight (D). The origin

of this quite poor numerical behavior is  the flat-flux weight with

differences of several orders of magnitude in its components.

Fig. 2 shows the original and modified eigenvalues of X̂BX̂  on

a large scale. The weights (B) through (F) distort even a few of the

largest eigenvalues: this is most evident for the largest eigenvalue

for the weight (C). The distortions are not  large, but demonstrate

that scaling might, and in this case does, damage the eigenvalues.

The weight (A) does not  distort the large eigenvalues. Had the

Fig. 1. The  weights (A) through (F) for 4
2
He. The weights have been normalized so

that the largest element is  unity. The weights for total cross section are identical.



R. Vanhanen / Nuclear Engineering and Design 297 (2016) 148–157 153

−2 0 2 4 6 8 10

x 10
−3

(A
)

b2

  

(B
)

(C
)

(D
)

(E
)

(F
)

Modified Original

Fig. 2. Eigenvalues of  original and modified covariances of 4
2
He.
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Fig. 3. Eigenvalues of original and  modified covariances of 4
2
He: magnification

for  negative eigenvalues. The box around each eigenvalue presents the estimated

bounds due to finite precision computation (box colors inverted). The boxes appear

as lines. (For interpretation of  the references to color in  this  figure legend, the reader

is referred to the web version of  this article.)

correction been applied to the relative covariances, B, the unit

weight would correspond to weight (B) of X̂BX̂ and would not

distort eigenvalues.

Fig.  3 shows a magnification for negative eigenvalues. On  this

scale, it appears that all weights deflate the two negative eigenval-

ues. However, the weights (B) through (F) distort the eigenvalue

near 10−4b2 in contrast to  the  weight (A).

Fig. 4 shows a magnification of a region near the origin. There

are 6 eigenvalues with zero eigenvalue that describe the sum rule,

which states equality of total and elastic cross sections. Strictly

speaking, the weights (D) and (E) do  not manage to deflate the
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Fig. 4. Eigenvalues of original and modified covariances of 4
2
He: magnification of

a region near the origin. The box around each eigenvalue presents the estimated

bounds  due to finite precision computation (box colors inverted). Most of  the boxes

appear as lines. (For interpretation of  the references to color in this  figure legend,

the reader is referred to the web version of this article.)

Fig. 5.  Original and modified relative standard deviations of 4
2
He. The original

standard deviations are the smallest in all energy-intervals.

negative eigenvalues. The weight (E) even distorts one of the eigen-

values that describe the sum rule. The reason for this appears to be a

small round-off error that is multiplied by a factor of up to 100 when

the covariances are weighted back after deflation. In the augmented

energy grid the remaining negative eigenvalues are on the order

of 10−11b2 for all three energy-interval weights. If  one  chooses to

use energy-interval weights, an obvious remedy is to first use the

energy-interval weights, and then remove any remaining negative

eigenvalues by using the unweighted Frobenius norm.

The deflation modifies all elements of the covariances. The orig-

inal and modified relative standard deviations are shown in Fig. 5.

The largest changes occur in the energy-interval with  the small-

est energies. Here the energy-interval weighted norms cause the

largest increases in the standard deviation. The weights (A) through

(C) are larger here than the  energy-interval-weights, which causes

them to  prefer modifying elements in other energy regions. The

situation is reversed above 500 keV. Use of the weights (B) and

(C) results in the most uniform changes, while the  other weights

concentrate their changes to the energy-interval with the smallest

energies.

Fig. 6. Original correlations of 4
2
He for elastic scattering cross section. The corre-

lations  for total cross section and cross-reaction correlations are  identical. The six

separate energy-intervals are clearly visible.
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Fig. 7.  The weights (A) through (C)  for 238
92

U. The weights have been normalized so that the largest element is  unity.

The original correlations are shown in Fig. 6. The six separate

energy-intervals are clearly visible. The deflations mostly reduce

the positive correlations. For the weights (D)  through (F) the largest

decreases in the correlation coefficients are up to  0.63 between the

lowest and third lowest energy-intervals. This  results in less  corre-

lation between low and high energies. For the  weights (A) and (B)

the largest decreases occur for the same energy box, by 0.32 and

0.20, respectively. For the weight (C) the largest decreases occur

in the energy box with third largest and third smallest energies,

by 0.15. Again, this reduces the correlation between low and high

energies. The weights (A) through (C) also replace zero correlations

between the lowest and third highest energies with slightly posi-

tive correlations, up to 0.11, but reduce correlations of its nearest

neighbors.

All modifications in the augmented energy grid are qualitatively

similar to the non-augmented case.  However, as expected the dis-

tortions in the non-negative eigenvalues are larger.

4.2. Covariances of cross sections of 238
92

U

The  weights for 238
92

U are illustrated in Fig.  7. The resolution on

which uncertainties are estimated is less than the energy resolu-

tion of the cross sections. Therefore, the resonance structure is not

fully captured and appears as rapid increases and decreases of the

unweighted averages of  the  best-estimates. The weight (A)  is  unity

for all energy-intervals. It is worth noting that  both the weights

(B) and (C) have large weights for  the fission cross section, and

hence modifying covariances with the fission cross section is  more

expensive  than changing covariances of other cross sections. For

the weight (A) all changes are equally expensive. Otherwise the

weights (B)  and (C) are quite similar to each other, since their ratio

is the relative standard deviation that varies only a little.

The energy-interval weighting does not  have an effect here, so

under exact arithmetic, the norms (D) through (F) give identical

results to  the weights (A) through (C), respectively. In this case  the

maximum relative differences between the  weights were at most

2 ×  10−7%,  which occurred for the weights (A) and (D). In the end,

the modified covariances are consistent to  about 12 decimals for

the weights (A)  and (D),  13 decimals for the weights (B) and (E)

and 14 decimals for the weights (C) and (F) in the average sense of

Eq. (13).  Hence the finite precision computing did not cause large

differences in the results.

Except  for the weight (A) the modifications to  standard devia-

tions were small, as can be seen from Fig. 8. The weights (B) and (C)

are very close to the original evaluation, with largest changes in the

lowest energy-interval. Here the standard deviations are increased

for radiative capture and decreased for  total and elastic scattering.

There are also other small differences. The weight (A) concentrates

modifications to  the  standard deviations of the smaller cross sec-

tions. The relative standard deviation of radiative capture cross

section is increased in the region above 1 eV to almost 32%. How-

ever, the  relative standard deviation of the fission cross section is

increased to well over 1000%. The weight is clearly not suitable for

this case.

Fig. 9 shows the original correlations. The intra-reaction correla-

tions are mostly positive, and there is a mostly positive correlation

Fig. 8. Original and modified standard deviations of 238
92

U. The differences between the original and weights (B) and  (C) are less than  line width in many places. For the fission

cross section modified standard deviations using the weight (A) vary between 1000% and 7.5 × 108%, which are  therefore out of figure. For radiative capture the maximum

for the same weight is 32%.
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Fig. 9.  Original correlations of 238
92

U.

between total cross section and elastic scattering. The cross-

reaction correlations with the fission cross section are mostly small.

Fig. 10 shows the differences in the original and modified cor-

relations for the weight (A). There are many changes where the

correlations are flipped over from almost negative unity to almost

positive unity, and vice-versa. Most clearly this is  seen in the  corre-

lations of fission cross section, except for the  diagonal that naturally

remains to be unity. The large change agrees with the huge increase

of the standard deviations. There are also large changes in a few

energy boxes of correlations with  radiative capture, but fairly small

changes to correlations with total and elastic cross sections. This

can be understood as follows: the magnitudes of the covariances

are much smaller for the fission cross section than for  other cross

sections, since all original relative standard deviations were on the

same order of magnitude and the fission cross section is several

orders of magnitude smaller than other cross sections. Since the

weight is unity for all  components of the  covariances, the  smallest

possible adjustments cause large relative changes to  covariances

with the fission cross section.

Fig. 11 shows the differences in the original and modified cor-

relations for the weight (B). The weight removes the  scale of cross

Fig. 10. Differences in correlations of 238
92

U when the nearest consistent covariance

are  sought by weight (A).

Fig. 11. Differences in correlations of 238
92

U when the nearest consistent covariance

are  sought by  weight (B).

sections from the  covariances before finding the nearest consistent

covariances. Therefore covariances with  fission cross sections are

modified less  dramatically than with the weight (A). The magni-

tude of changes is also smaller than with the weight (A). The low

energy portions of correlations with total cross section are modified

the most, but some positive correlation is  also introduced between

low-energy elastic scattering and radiative capture.

Fig. 12 shows the differences in the original and modified corre-

lations for the weight (C), which removes the scales of cross sections

and uncertainties from the covariances before finding the nearest

consistent covariances. The outcome is qualitatively similar to the

outcome of the weight (B). Note that the magnitude of changes in

correlations is smaller than for the  weight (B). However, if relative

standard deviations varied a lot, then the weight (B) would have a

larger spread while the  weight (C) would be  scale-free in this sense.

In such a case the  elements with high uncertainty would change less

with the weight (B) than with the  weight (C), which might lead to

smaller overall uncertainties for the weight (C).

Had the  energy grid not been augmented, the changes would

have been smaller: the changes in the correlation coefficients varied

Fig. 12. Differences in correlations of 238
92

U when the nearest consistent covariance

are  sought by  weight (C).
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Fig. 13. Eigenvalues of original and modified covariances of 238
92

U: magnification

for  negative eigenvalues. The box around  each eigenvalue presents the estimated

bounds  due to finite precision computation (box colors inverted). The boxes appear

as lines. (For interpretation of the references to color in  this figure  legend,  the reader

is referred to the web version of this article.)

between -1.01 and 1.00, -0.18 and 0.23, and -0.06 and 0.05 for the

weights (A), (B) and (C), respectively. For the weight (A) the largest

changes are still large. This  demonstrates that the criterion in the

augmented energy grid requires larger changes, since the criterion

is tighter.

Fig. 13 illustrates the original and modified eigenvalues of X̂BX̂
near  the origin. The negative eigenvalue is preserved. For  this

particular case, the weights (A) and (C) introduce 3 and 2 new

zero eigenvalues, respectively. The weight (B) does not introduce

any new zero eigenvalues, but  only  modifies eigenvectors of the

existing ones. The eigenvalues are also shown for the  weights (D)

through (F): the small differences to the weights (A)  through (C),

respectively, cannot be seen in scale of the graph.

5. Discussion

Improper covariances are  a  result of either unphysical data,

processing errors or rounding errors.  Generally all these error types

should be corrected, but it is also possible to find nearby covarian-

ces whose improper parts have  been  removed. What the  practical

implications of the changes made by removing improper parts are,

and whether the use of the nearby proper covariances is  safe, must

still be judged case-by-case.

The  implementations are straightforward if the  correspond-

ing methods are available for multigroup covariance matrices. For

the methods to verify whether energy dependent covariances are

proper, it suffices to use the flat-flux weight when averaging best-

estimates. For methods to  find a  nearby more proper covariances,

the multigroup methods can be  used  as-is for  norms (A) and (B).

For other norms it suffices to  implement assembling of the weights

and scaling of the covariances.

The  effects of the weights differ for different cases. For the

single-quantity case of 4
2
He  the  different weights played only a small

role. For the larger, four-quantity case of 238
92

U the different weights

produced large differences.

The  norms (B), (C),  (E) and (F) are scale free in at least one sense,

and hence they are likely to  give  better results than the weights

(A) and (D) for medium to large changes. However, their numerical

precision is  worse than that of the weight (A). An obvious remedy

is to make larger changes with the weights (B), (C), (E) and (F) and

handle any remaining smaller corrections with the  weight (A).

It is also possible to use other weights, such  as  the weights (G)

and (H). Since the weights can be set rather freely, one can encode

the belief that covariances of a piece of  nuclear data are correctly

evaluated in a specified energy-interval: setting the weight to a

large value in the energy-interval will keep the corresponding

variance and covariances nearly intact when finding nearby

covariances.  One can combine such trust based weight with other

weights by  multiplying them.

The norms (D),  (G) and (H) have a physical interpretation. How-

ever, the results of the  norm (D) were no better than those of the

norm (A) for 238
92

U,  and the norms (G) and (H) are system specific.

The energy-interval weighting does not have an effect for con-

sistency, but  the  necessary condition for sum rules can be made

tighter by increasing energy resolution by augmenting energies to

the energy grid.

The  method to find nearby positive covariances was  conserva-

tive in the case of 4
2
He, in the sense that it  did not decrease variances.

The method to  find nearby consistent covariances is not conserva-

tive in the same sense.

The  example of carbon (see Section 2.3) illustrates how incon-

venient the relative representation is when there is some linearly

redundant data present. In the ENDF-6 format it is perhaps the

most practical to  not encode all redundant data directly, but to

use derivation rules to mark one component as  being  derived from

others according to its  sum rule. For inconsistent covariances, one

can find nearby more consistent covariances, drop one component

and mark it as  being derived. However, this is not always neces-

sary since, for example, the case  of 4
2
He could be  encoded directly

without causing the covariances to  be inconsistent.

The norms can also be used  with the similar methods for multi-

group covariance matrices.

The method to  find nearest positive covariance matrices can

be applied to covariances of resonance parameters, i.e.,  MF 32 of

the ENDF-6 format. The covariances of resonance parameters seem

to contain no redundant data in  the ENDF-6 format. The different

weights can be  used to  reduce the scaling effects. Žerovnik  et al.

(2014) have proposed finding nearest correlation matrices of reso-

nance parameters. This is close to using the weight (C) but  differs

in that variances are required to be preserved when finding the

nearest correlation matrix.

The method to find nearby consistent covariances can also be

applied to find nearby consistent covariances for  a probability dis-

tribution, e.g., covariances for energy distributions of secondary

particles. The null vectors are v = [1, . . .,  1]� for (absolute) cova-

riances. The weight W−1 = |X̂|D  yields the formula that is listed

in ENDF-6 Formats Manual (Trkov et al., 2012, Chapter 35.3) for

covariances for energy distributions of  secondary particles.

6.  Conclusions

We  have presented conditions for covariances of energy

dependent nuclear data to  be  positive and consistent with the  sum

rules of nuclear data. We  have given these conditions in a general

form as well as  for a specific representation of covariances. For the

latter we  have presented sufficient and necessary conditions for

covariances of energy dependent nuclear data to be positive and

consistent with  sum rules. Most of  the ENDF-6 format covariances

(MFs 31, 33, and 35, LBs 0 through 7), for  example, are covered by

the representation. With the  exception of the  sufficient condition

of consistency with respect to  the sum rules, the conditions can be

verified using methods that verify  similar conditions for multigroup

covariance matrices.

The  evaluators can use these methods to verify that their cova-

riances are proper. In the ENDF-6 format most covariances of

redundant pieces of nuclear data should be marked to be derived

from the covariances of the  nuclear data that the redundant piece

depends on.

We  have also presented methods to find nearby more proper

energy dependent covariances. In a case where a re-evaluation of

improper covariances is not feasible, it  is possible to find nearby

more proper covariances using, for  example, one of the methods,
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with one of the norms, presented in this work. Making nearly

minimal changes ensures that  the evaluator’s insight is  respected

nearly as much as  possible, while still  making the covariances

more proper. What the practical implications of  the changes are,

and whether the use of the more proper covariances is acceptable,

must still be judged case-by-case.

The  methods to  detect improper covariances would be  valuable

tools for evaluators, and the methods to  find nearby more  proper

covariances might be useful for users of evaluated nuclear data files.
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a b s t r a c t

We survey prediction capabilities of ENDF/B-VII.1, JEFF-3.2 and JENDL-4.0u nuclear data libraries

(NDLs) for the application of generating two-group homogenized assembly constants for a steady state

diffusion model in the context of UAM-LWR (Uncertainty Analysis in Best-Estimate Modeling for

Design, Operation and Safety Analysis of LWRs) Benchmark. We consider two different fuel assembly test

cases representing a PWR. State of uncertainty quantification in each NDLs is presented for the applica-

tion. We expect small differences between the NDLs due to the use of expert judgment in the evaluation

processes, and identify several order-of-magnitude differences between the NDLs for significant con-

tributors to uncertainty. We also quantify the contribution from cross-material correlations to the

uncertainties.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Evaluated nuclear data files contain estimates of physical quan-

tities referred to as nuclear data. The estimates are a result of eval-

uation of theoretical models and empirical measurements, both of

which are imperfect and therefore do not provide the true values of

the nuclear data. Some evaluators have quantified the uncertain-

ties resulting from these imperfections, and thereby quantitatively

expressed their subjective degrees of belief on what the true values

of nuclear data are.

In applications the nuclear data can be used to predict quanti-

ties of interest. Since the true nuclear data is not known, the quan-

tities of interest are predicted using evaluated nuclear data. In

uncertainty analysis, degrees of belief on the true values of the

quantities of interest can be acquired by propagating the uncer-

tainties of evaluated nuclear data to uncertainties of the quantities

of interest. The propagated uncertainties can be interpreted as a

measure of the prediction capability of the evaluated nuclear data

for the considered application. In principle, the smaller the propa-

gated uncertainties, the better the prediction capability of the

evaluated data.

A nuclear data library (NDL) contains a set of evaluated nuclear

data files, which have been evaluated to perform well both

individually and together. In this article we consider three NDLs:

ENDF/B-VII.1 (Chadwick et al., 2011), JEFF-3.2 (OECD/NEA

Data Bank, 2014), and JENDL-4.0u (Shibata et al., 2011; Japan

Atomic Energy Agency, 2013). The development of uncertainty

estimates for the nuclear data is in progress in the NDLs (Ivanov

et al., 2013). Therefore, the NDLs contain evaluations with fully

quantified, partially quantified and unquantified uncertainties.

The propagated uncertainties do not and can not include con-

tribution from unquantified uncertainties, and this component of

uncertainty must be taken into account by other means. Since

the uncertainties are not sufficiently completely quantified in the

NDLs, it is meaningless to compare their overall prediction

capabilities directly.

In recent years there has been an increasing demand to be able

to provide all calculation results depending on nuclear data with

some uncertainty estimates. To promote this goal, a benchmark

titled ‘‘Uncertainty Analysis in Best-Estimate Modeling for

Design, Operation and Safety Analysis of LWRs’’ (UAM) was pre-

pared in 2006 by the OECD/NEA Expert group on Uncertainty

Analysis in Modeling (Ivanov et al., 2013). In the UAM benchmark,

the goal is to be able to propagate nuclear data uncertainty through

all stages of coupled neutronics/thermal-hydraulics calculations.

As a first step, this requires developing uncertainty analysis

methodologies for reactor physics codes that are used to produce

homogenized constants for the following full core calculations.
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In this article we survey the prediction capabilities of the three

NDLs in the context of the reactor physics phase of the UAM bench-

mark. We compute the two-group homogenized constants for a

steady state diffusion model for a uranium dioxide and a mixed

oxide assembly from the UAM-LWR benchmark. These act as

representatives of PWR assemblies. Uncertainty analysis capability

based on first order sensitivity analysis has been previously imple-

mented to the fuel assembly burnup program CASMO-4 (Rhodes

and Edenius, 2001; Pusa, 2012a,b, 2014), which is also used in this

study. The multigroup adjoint-based approach, although approx-

imative and indirect, allows to identify the contribution from each

piece of nuclear data to the propagated uncertainties. For this pur-

pose a piece of nuclear data is specified by a pair of material and

quantity. Therefore the prediction capabilities of the NDLs can be

compared quantity-wise for each material.

It should be emphasized that we expect small differences in the

prediction capabilities of the NDLs, since available experimental

data and theoretical information change in time, and the evalua-

tion procedures include expert judgment which the evaluators

use slightly differently. Therefore, the evaluators knowledge of

the nuclear data differs slightly (Cacuci, 2003; Talou et al., 2011).

However, an order-of-magnitude differences in prediction

capabilities signal that an evaluator has not included all significant

information in the evaluation or has made an error. In the former

case the significant information might be missing from the evalua-

tion with the larger or smaller uncertainties, since new informa-

tion might increase or decrease the uncertainties.

We identify materials whose contributions to uncertainty might

be important but which do not have uncertainty estimates in any

of the three NDLs by using the ZZ-SCALE6/COVA-44G library

(OECD/NEA Data Bank, 2011), which is complete for our purposes.

The library is largely based on the uncertainty estimates from the

low-fidelity covariance project (Little et al., 2008) whose aim was

to provide crude uncertainty estimates for almost all materials.

Due to low fidelity the identification is not very accurate but it is

clearly beneficial to have some uncertainty estimates for the data

whose uncertainty is otherwise considered as zero.

In this article we also quantify the sometimes neglected con-

tribution from cross-material correlations.

The rest of the article is organized as follows: relevant parts of

the theory are briefly reviewed in Section 2. The calculational pro-

cedure and the status of the uncertainty quantification in the con-

sidered NDLs is presented in Section 3 and the results are analyzed

in Section 4. Finally, the conclusions are presented in Section 5.

2. Theory

2.1. Nuclear data and its uncertainties

Nuclear data is uncertain, since the true values of pieces of the

nuclear data are not known. We cover only the finite-dimensional

case for convenience, so the nuclear data a belongs to R
k. The

uncertainty should be understood in terms of the Bayesian proba-

bility interpretation. The subjective knowledge of the nuclear data

can then be represented as a joint probability

pða1; . . . ;akÞda1 � � �dak; ð1Þ

that the true value of each piece of the nuclear data ai is in

ðai;ai þ daiÞ for each i ¼ 1; . . . ; k simultaneously (Trkov et al.,

2012). The first moments of the distribution are called the best-esti-

mates of pieces of the nuclear data and denoted by â 2 R
k, and the

second central moments form the covariance matrix which is

denoted by covða;aÞ 2 R
k�k. The covariance matrix describes

approximately the uncertainties of the nuclear data.

2.2. Uncertainty analysis

In applications quantities of interest, usually referred to as

responses, R 2 R
n are calculated from parameters a 2 R

k, which

in this case include the nuclear data, through a mapping

f : Rk ! R
n.

In the first order uncertainty analysis the mapping is linearized

so that

R ¼ f ðaÞ ¼ f ðâÞ þ SðâÞða� âÞ þ Oðka� âk2Þ; ð2Þ

where S 2 R
n�k are the sensitivities of the mapping and are evalu-

ated at the best-estimate values. The first order uncertainty prop-

agation formula (see, e.g., Cacuci, 2003; Vanhanen, 2015a for

derivation) is

covðR;RÞ ¼ SðâÞcovða;aÞSðâÞ
>
þ Oðka� âk3Þ; ð3Þ

where covðR;RÞ 2 R
n�n is the covariance matrix of the responses.

The equation is also known as the ‘‘sandwich rule’’ (Pusa, 2012b),

the ‘‘second moment propagation’’ equation (Cacuci, 2003), and

the ‘‘propagation of errors’’ formula (Trkov et al., 2012).

For certain mathematical models, the sensitivity matrix in Eq.

(3) can be computed efficiently by utilizing the adjoint system of

the original forward problem (Cacuci, 2003). In reactor physics

the forward problem is the criticality equation and this approach

is called (generalized) perturbation theory (Wigner, 1945;

Usachev, 1964). This is the framework for the sensitivity analysis

implementation in the modified CASMO-4 code used in this study

(Pusa, 2012a,b).

2.3. Reaction models

CASMO-4 (Rhodes and Edenius, 2001) solves the transport cor-

rected isotropic scattering approximation of the multigroup trans-

port equation. The reaction model 1 is simplified by lumping all

scattering reactions into a total scattering reaction, and the gener-

ated two-group homogenized constants are simplified by using an

effective capture reaction. Therefore the reaction model in CASMO-

4 consists of transport, total scattering, effective capture and fission

reactions.

The reaction model in the ENDF-6 format is more fine grained.

In the following, tilded quantities refer to multigroup constants

generated from ENDF-6 quantities and other quantities refer to

the CASMO-4 quantities.

The transport cross section is defined as

rtr ¼ ~rtot � ~l~rs; ð4Þ

where rtot is the total cross section, l is the scattering cross section

weighted average cosine of the scattering angle in the laboratory

frame and rs the scattering cross section.

The (isotropic) total scattering cross section (weighted by num-

ber of emitted neutrons) is defined as

rs ¼
X

i

msi
~rsi ; ð5Þ

where msi is the multiplicity of each partial reaction. The index i

runs over elastic and inelastic scattering reactions, which include

thermal scattering in the appropriate energy region, and neutron

duplication reaction in certain energy groups in the high energy

region. Other reactions are ignored. The multigroup form of the

scattered neutron spectrum from group h is defined as

1 We consider only the reactions used in solving the approximation of the transport

equation and generating the two-group homogenized constants for a steady state

diffusion model.
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ps;h!g ¼
X

i

msi
~rsi

~psi ;h!g=rs; ð6Þ

so that the scattering cross section from group h to group g, rs;h!g , is

rsps;h!g . The summation is the same as in Eq. (5).

The effective capture cross section is defined as

rc ¼
X

i

~ri � ~r2n; ð7Þ

where the index i covers radiative capture and emissions of proton,

deuterium, triton, hellion and alpha particles. The correction for

neutron duplication eliminates the need of a separate two-group

constant for neutron duplication. Other reactions are again ignored.

The fission reaction is described by the total average number of

emitted neutrons per fission m ¼ ~m, fission cross section rf ¼ ~rf and

energy distribution of the emitted neutrons vf . The energy dis-

tribution is assumed to be independent of the incident neutron

energy and is, in principle, a weighted average of distributions with

different incident neutron energies. That is, in multigroup form

vf ¼
X

h

wh~vf ;h ð8Þ

with suitable coefficients wh.

We use the ‘‘sandwich rule’’, Eq. (3), to derive covariances for

the CASMO-4 reaction model from the covariances in the ENDF-6

reaction model. This approach was first considered in Pusa

(2012a). The sensitivities are mostly evident in Eqs. (4)–(8).

However:

(a) We approximate the transport cross section in Eq. (4) by

total cross section.

(b) The considered evaluations do not include covariances for

the energy distributions of emitted neutrons except from fis-

sion reactions. Therefore the distributions in Eq. (6) are

assumed to be exact.

(c) The covariances for thermal scattering cross sections are

replaced by the covariances for the elastic and inelastic scat-

tering cross sections in Eq. (5). The replacement would not

be excusable in the corresponding energy distributions of

emitted neutrons, i.e., Eq. (6).

(d) The coefficients wh in Eq. (8) are approximated as one for the

energy group which includes 0.625 eV and zero for others.

For the considered evaluations this gives covariances for dis-

tributions whose incident neutron energy range is from at

most 10�5 eV to at least 500 keV and therefore covers ther-

mal and epithermal fissions but only approximates fissions

caused by fast neutrons.

The assumption that ps;h!g are exact and rs is the only quantity

containing uncertainty is likely to underestimate the uncertainty

due to the scattering reactions. Unfortunately some approx-

imations need to be enforced as there is no covariance data avail-

able for the group-to-group scattering cross-sections currently.

This issue is discussed in more detail in Pusa (2012a). Predicting

this kind of model uncertainty, i.e., uncertainty caused by physical

approximations in the model, is beyond the scope of this article

and is omitted.

2.4. Importance ranking

In the first order sensitivity and uncertainty analysis the rela-

tive form of Eq. (3) gives the relative variance of a response R by

rvarðRÞ ¼
X

i;j

�Sircovðai;ajÞ�S
>
j ¼

X

i;j

cij; ð9Þ

where rcovðai;ajÞ denotes the relative covariance matrix between

ith and jth pieces of nuclear data and �Sk is the response and system

dependent relative sensitivity coefficient vector of kth piece of

nuclear data. For this purpose a piece of nuclear data is specified

by a pair of material and quantity. It holds that cij ¼ cji.

We consider the quantity

Iij ¼

jcijj when i ¼ j;

jcij þ cjij when i > j;

0 otherwise

8
><
>:

ð10Þ

as the absolute importance of i; jth pair of material-and-quantity-

pairs. Relative importance, sometimes called normalized impor-

tance, Rij is defined as Iij=
P

i;jIij. Sometimes we list the sign of cij in

front of absolute importances. Both importance and relative impor-

tance are sometimes referred to as contribution to variance or

briefly as contribution. We rank the pairs by sorting them by their

importance (Cacuci et al., 2005; Cacuci and Ionescu-Bujor, 2010).

This definition of importance corresponds to the absolute value

of the change in the relative variance when the components cij
change.

3. Calculations

We generate multigroup nuclear data covariances from the con-

sidered NDLs and perform first order uncertainty analysis using

sensitivities computed for two assemblies.

3.1. The fuel assemblies

Our first assembly is the fresh TMI-1 15� 15 PWR uranium

dioxide (UO2) assembly in hot zero power (HZP) conditions with

inserted control rods from the UAM-LWR benchmark (Ivanov

et al., 2013). The fuel pins are helium filled and Zircaloy-4 cladded.

The assembly contains 4 pins with gadolinium as burnable absor-

ber. The control rods have silver-indium-cadmium absorber

cladded with Inconel 625, and are inserted in 16 Zircaloy-4 guide

tubes. The moderator-coolant is free of absorbers.

Our second assembly is the GEN-III 17� 17 PWR mixed oxide

(MOX) assembly in hot full power (HFP) conditions with withdrawn

control rods from the UAM-LWR benchmark (Ivanov et al., 2013).

The fuel pins are helium filled and Zircaloy-4 cladded. The assem-

bly contains no pins with burnable absorber. The moderator-cool-

ant contains 1300 ppm of natural boron.

3.2. Responses and generation of their sensitivity profiles

We take the two-group homogenized constants for a steady

state diffusion model as responses. The steady state diffusion

model consists of the infinite multiplication factor kinf , the group

transfer constant Rs;1!2, and fast and thermal diffusion coefficients

D1 and D2, (effective) absorption constants Ra;1 and Ra;2, neutron

production constants mRf ;1 and mRf ;2, and assembly discontinuity

factors f 1 and f 2. The responses are a subset of quantities that

can be computed with CASMO-4.

We compute the sensitivity profiles for the responses in

CASMO-4 40-group structure (Rhodes and Edenius, 2001) with

CASMO-4 (Rhodes and Edenius, 2001; Pusa, 2012a,b, 2014) using

its built-in nuclear data library. The built-in NDL is based on

JEF2.2 and ENDF/B-IV data (Rhodes, 2005). Therefore the

responses and the sensitivity profiles will be the same for all

NDLs and any differences in the uncertainties arise only from dif-

ferences in the uncertainties in the NDLs or their processing.

3.3. Materials and their uncertainty estimates

We model all nuclides in the absorbers, fuel and moderator-

coolant. For structural materials we include oxygen, chromium,
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iron, nickel, zirconium and niobium as elemental materials, and tin

as isotopes. Covariances for the elemental materials are formed by

using the ‘‘sandwich rule’’. Natural oxygen is assumed to consist of
16O only.

The choice to use elemental materials is due to the built-in

library having only elemental data for these elements, and hence

only elemental sensitivity profiles can be generated. We also

ignore the helium filling, since the built-in nuclear data library

effectively assumes zero cross sections for it.

3.3.1. Intra-material covariances

The status of uncertainty quantification of nuclear data in the

considered NDLs is presented in Table 1 for our application. In gen-

eral, almost all of the individual evaluations cover necessary reac-

tions, if the evaluation contains any uncertainty estimates in the

first place. In a few cases the relevant energy region is only par-

tially covered, e.g., because only the uncertainties of resonance

parameters are quantified.

For the absorbers the quantified uncertainties vary by NDLs.

Isotopes of boron are well covered in all the considered NDLs.

However, JENDL-4.0u has no other estimates for uncertainty

and JEFF-3.2 only for two isotopes of gadolinium. ENDF/

B-VII.1 contains quantified uncertainties for most isotopes of

gadolinium. For the control rods in the UO2 assembly the only

uncertainty estimates are for 109Ag of ENDF/B-VII.1. Notably,

there is no uncertainty estimates for the main absorber in the con-

trol rods, 113Cd, in any NDL.

For the fuel materials the quantified uncertainties vary by NDLs.

JENDL-4.0u contains all relevant uncertainty estimates for our

application, and ENDF/B-VII.1 almost all relevant uncertainty

estimates, lacking mostly few covariances of the total number of

neutrons emitted from fission and few covariances of the energy

distributions of neutrons emitted from fission. However, JEFF-

3.2 lacks uncertainty estimates for many important fuel nuclides,

including 235U.

For the gas gap material the uncertainties are quantified for

ENDF/B-VII.1, but not for the other two NDLs.

For the moderator-coolant and multipurpose materials the

uncertainties are quantified for ENDF/B-VII.1, but JENDL-4.0u

does not have uncertainty estimates for 1H and JEFF-3.2 does

not have uncertainty estimates for 16O.

For the structural materials the quantified uncertainties vary by

NDLs. JEFF-3.2 contains many uncertainty estimates but, com-

pared to ENDF/B-VII.1, lacks uncertainty estimates for many iso-

topes of zirconium. In contrast to quite complete uncertainty

estimates for the fuel nuclides, JENDL-4.0u lacks uncertainty esti-

mates for many structural materials. General lack of covariances

for tin is apparent, although JEFF-3.2 has covariances for
122,124Sn.

3.3.2. Cross-material covariances

The cross-material covariances in the NDLs are listed in Table 2.

ENDF/B-VII.1 has cross-material correlations between some

of the cross sections that are standards (Chadwick et al., 2006;

Carlson et al., 2009). JEFF-3.2 has adopted evaluations from

ENDF/B-VII.1 for 6Li, 10B and 197Au, but not removed references

to 235U, 238U and 239Pu. Therefore the cross-material correlations

remain, although 235U has no covariances in JEFF-3.2.

ENDF/B-VII.1 has also cross-material correlations between

average numbers of emitted neutrons per fission. These remain

from the original ENDF/B-V evaluation. The covariances are from

Peelle (Tomlinson et al., 1977), except the references to covariances

of mt of
240,241Puwere added frompersonal communication between

Weston and Magurno (ENDF/B-V, 2014). In modern evaluations the

referenced covariances of mt of
240,241Pu aremissing andweassumed

them to be zero, thereby respecting Peelle’s evaluation.

JENDL-4.0u has cross-material correlations because the six

listed actinides were evaluated using empirical data from ratio

measurements between the nuclides (Iwamoto et al., 2009).

The upcoming ENDF/B-VII.2 might contain cross-material

correlations between isotopes of zirconium due to measurements

using natural zirconium samples (Brown et al., 2014).

3.4. Multigroup nuclear data covariances

The multigroup nuclear data covariances in CASMO-4 40 group

structure (Rhodes and Edenius, 2001) were generated using

slightly modified NJOY 2012.22 (Kahler et al., 2012; Kahler,

2014). All NJOY computations used relative reconstruction toler-

ance of 5 � 10�5 and 551 K temperature. Maxwell + 1=E + fission

spectrum weight was used with 0.1 eV thermal break, 820.3 keV

Table 1

Status of uncertainty quantification in the considered NDLs for selected materials.

ENDF/B-VII.1 JEFF-3.2 JENDL-4.0u

Absorber materials
10B c, m+ c, m+ m-
11B m+ m+ m-
107Ag n n n
109Ag m+ n n
106,108,110–114,116Cd n n n
113,115In n n n
152–154Gd m+ m+ n
155–158,160Gd m+ n n

Fuel materials
235U c, m+, f, m;v n c, m+, f, m+, v
238U c, m+, f, m;v m-, f c, m+, f, m+, v
238Pu m+, f, m;v n m+, f, m+, v
239Pu c, m+, f, m;v m-, f c, m+, f, m+, v
240Pu m+, f, m n c, m+, f, m+, v
241Pu m+, f, m n c, m+, f, m+, v
242Pu m+, f, m+, v n m+, f, m+, v
241Am m+, f, m+ m-, f m+, f, m+, v

Gas gap materials
4He m� n n

Moderator-coolant materials
1H m� m� n

Multipurpose materials
16O m+ n m+

Structural materials
50Cr m+ m+ n
52,53Cr m+ m+ m+
54Cr m� m+ n
54,57Fe m+ m+ n
56Fe m+ m+ m+
58Fe n m+ n
58,60Ni m+ m+ m+
59Ni n n n
61–62,64Ni n m+ n
90Zr m+ m+ m, e
91,93,95–96Zr m+ n n
92,94Zr m+ m+ n
93Nb n n n
112,114–120Sn n n n
122Sn n m+ n
124Sn n m+ n
126Sn n n n

n No relevant covariances present.

m Covariances of cross-sections of major reaction channels present (elastic,

inelastic or its levels and radiative capture).

m+ Above and more present.

m� Above and possibly more but no inelastic present.

f Covariances of fission cross section present.

m Covariances of total, prompt or delayed m present.

m+ All above present.

v Covariances of fission v present.

c Cross material covariances present.

e No covariances of elastic reaction present.

R. Vanhanen, M. Pusa / Annals of Nuclear Energy 83 (2015) 408–421 411



fission break and 1.4 MeV fission temperature. The module PURR

was run with 40 bins and 80 ladders and the covariances of reso-

nance parameters are processed in ERRORR using NJOY’s 1%

sensitivity method, when applicable.

Many formatting issues were reported and fixed in the NDLs.

Notably many cross-reaction covariances of JEFF-3.2 referenced

themselves by their ZA-number instead of material number or

self-reference. In these cases the cross-reaction covariances might

be interpreted as cross-material covariances between the material

and a non-existing material.

The multigroup nuclear data covariances were postprocessed

by summing all redundant reactions from their partials, thereby

ensuring consistency with respect to the sum rules (Vanhanen, in

press). Negative eigenvalues were removed from all sets by finding

the nearest positive semidefinite relative covariance matrix in the

Frobenius norm (Vanhanen, 2015b).

We used the same temperature for all computations to avoid

problems with temperatures of oxygen and materials with cross-

material covariances. The temperature of 551 K is correct for the

UO2 HZP assembly, and close to correct for the MOX HFP assembly.

Preliminary computations without cross-material covariances

showed that a change from temperature of 551 K to 900 K resulted

in at most 0.9% change in the uncertainties of the considered

responses. Therefore we see conclusions based on differences lar-

ger than about 1% reasonable for the MOX assembly.

4. Results

4.1. Responses and their uncertainties

The correlation matrices between the responses are illustrated

in Figs. 1–6. A positive correlation between two responses, R1

and R2, indicates that if a random realization of the NDL is such

that the value of R1 increases, this will also increase the value of

R2 on the average. A strong correlation between the two responses

indicates that if the uncertainties of the NDL are reduced, by some

means, so that the uncertainty of R1 decreases, this is likely to

decrease the uncertainty of R2. However, the linear correlation

accounts for effects only up to first order. It is worth noticing that

the contributors to the correlations can be identified and ranked in

Table 2

Status of cross-material uncertainty data in the considered NDLs.a

ENDF/B-VII.1 and

JEFF-3.2

6Li rt
10B ra1

197Au rc
235U rf

238U rc
239Pu rf

6Li rt
b X X X

10B ra1
X

197Au rc X X X
235U rf X X
238U rc X
239Pu rf X X

ENDF/B-VII.1
235U mt

238U mp
239Pu mt

240Pu mt
241Pu mt

232Th mt

235U mt X X X X X
238U mp X
239Pu mt X
240Pu mt X
241Pu mt X
232Th mt X

JENDL-4.0u
233U rf

235U rf
238U rf

239Pu rf
240Pu rf

241Pu rf

233U rf X X X X X
235U rf X X X X X
238U rf X X X X X
239Pu rf X X X X X
240Pu rf X X X X X
241Pu rf X X X X X

X Present.
a Some derivation rules imply further cross-material covariances.
b Tritium production.

Fig. 1. Correlation matrix of the UO2 HZP responses for ENDF/B-VII.1.

Fig. 2. Correlation matrix of the UO2 HZP responses for JEFF-3.2.
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the same manner as for the total uncertainties of the responses,

although this is beyond the scope of the article.

It is interesting to see that for both assemblies, all responses

and the three NDLs the fast and thermal responses are positively

correlated. The spread is, however, large. For example, in the UO2

assembly between diffusion coefficients the correlation coefficient

varies between 0.11 (JEFF-3.2 and JENDL-4.0u) and 0.80 (ENDF/

B-VII.1). Also infinite multiplication factor is positively correlated

with fast and thermal neutron production constants, and nega-

tively with fast and thermal absorption constants and thermal dis-

continuity factor for all assemblies and NDLs.

The responses and their uncertainties for the considered NDLs

are listed in Table 3 for the UO2 assembly and in Table 4 for the

MOX assembly. In principle, the inverses of the uncertainties corre-

spond to the prediction capabilities (Cacuci, 2003). All NDLs predict

uncertainties in the same order-of-magnitude. However, uncer-

tainty quantification is not complete for any considered NDL and

essentially zero uncertainty has been assumed for the unquantified

uncertainties. In a few cases the unquantified uncertainties are

important. For example for ENDF/B-VII.1 the uncertainty of the

UO2 fast discontinuity factor has a contribution of 45% from
109Ag. The lack of uncertainty estimate for 109Ag in JEFF-3.2

and JENDL-4.0u is seen on the considerably smaller uncertainty

for the response. The uncertainty is missing one of its main compo-

nents, if the evaluators of JEFF-3.2 and JENDL-4.0u have roughly

the same knowledge on the true values of nuclear data of 109Ag as

the evaluators of ENDF/B-VII.1. Therefore the prediction

capabilities of the NDLs can not be directly inferred from the

tables.

However, the contributions of pieces of nuclear data which have

quantified uncertainties can be compared directly between the

NDLs.

4.2. Most important materials

We identify the most important pairs of material-and-quantity-

pairs by ranking them by their relative importance to variances of

the responses for both assemblies. We consider, rather arbitrarily,

pairs which have relative importances 5% or more for any response

in either assembly as important, and consider any material in these

pairs as important.

The shortlist of important materials is compiled in Table 5.

Notably 235U is not among the main contributors for any NDL for

the MOX assembly: it is known so accurately that it contributes less

than 5% to the variances in its MOX concentration.

The ZZ-SCALE6/COVA-44G library suggest that three addi-

tional materials might be important: 115In has 5.5% and 12.1% rela-

tive importances to the uncertainty of fast and thermal

discontinuity factor, respectively, 113Cd has relative importance

of 4.9% to the uncertainty of thermal discontinuity factor, and
107Ag has relative importance of 3.1% to fast absorption constant.

4.3. Differences between the NDLs

We compare the most important materials listed in Table 5 by

their (signed) absolute importances. The differences arise due to

NDLs and their processing only, since the absolute importances

are computed using assembly but not NDL specific sensitivities.

Fig. 3. Correlation matrix of the UO2 HZP responses for JENDL-4.0u.

Fig. 4. Correlation matrix of the MOX HFP responses for ENDF/B-VII.1.

Fig. 5. Correlation matrix of the MOX HFP responses for JEFF-3.2.

Fig. 6. Correlation matrix of the MOX HFP responses for JENDL-4.0u.
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Strictly speaking, the conclusions are restricted to the considered

test cases only, but we believe that our test cases represent a rea-

sonable share of PWRs.

The contributions of 1H are identical for ENDF/B-VII.1 and

JEFF-3.2, since the latter has adopted the evaluation from the

former.

The only difference between the NDLs for 109Ag and 157Gd is

that they have uncertainty estimates only in ENDF/B-VII.1,

which estimates their contribution to be up to 45% and 7.2% for a

response, respectively. The absolute importances of 157Gd are

typically an order-of-magnitude larger for ENDF/B-VII.1 than

for ZZ-SCALE6/COVA-44G, which is based on the low-fidelity

covariances (Little et al., 2008). This is an example of cases where

the low-fidelity estimates do not identify important nuclides.

4.3.1. Natural oxygen (16O)

The ENDF/B-VII.1 covariances for 16O are based on the low-

fidelity covariance library (Little et al., 2008) with data from vary-

ing sources. The JENDL-4.0u covariances are based on both

experimental data and nuclear model calculations (Shibata et al.,

1997), however, partials of the effective capture cross section are

fitted to experimental data without using information from

nuclear models.

The selected absolute importances for 16O are listed in Table 6.

The important contributions from the scattering cross section

are within an order-of-magnitude between the NDLs, although

usually with JENDL-4.0u the contributions are smaller than with

ENDF/B-VII.1.

The contributions from the effective capture cross-section have

an order-of-magnitude difference between the NDLs for the fast

absorption constant. With JENDL-4.0u data, the relative impor-

tance is 3.8%. The absolute importances are 5.49 � 10�4%2 and

1.47 � 10�2%2 for ENDF/B-VII.1 and JENDL-4.0u, respectively:

the importances differ by a factor of 26.7. Large differences in con-

tributions from the effective capture cross section are also

observed for some, but not all, responses in the fast energy region.

The differences seem to arise mostly from uncertainty of cross sec-

tion of a emission, since the uncertainties in other partials are

quite similar between the NDLs and the cross section for a emis-

sion dominates above its reaction threshold. There is an order-of-

magnitude difference between the threshold and 10 MeV in the

uncertainties: the low-fidelity estimate of ENDF/B-VII.1 is 2%

while the JENDL-4.0u estimate is 18% due to discrepancies in

the experimental data. The uncertainty estimates are less different

above 10 MeV.

4.3.2. Natural zirconium

The covariances in ENDF/B-VII.1 are from COMMARA-2.0

(Herman et al., 2011) library for all constituents, and they are

based on selected experimental data and nuclear model calcula-

tions. The JEFF-3.2 zirconium evaluations with covariances are

adopted from TENDL-2012 (Koning and Rochman, 2012). We cor-

rected the cross-reaction references before generating the multi-

group covariances. The covariances in JENDL-4.0u are based on

experimental data (Shibata et al., 1996).

The selected absolute importances for natZr are listed in Table 7.

The large differences result partly from the use of elemental eval-

uation, whose constituents differ for the NDLs.

� For ENDF/B-VII.1 all constituents of natural zirconium have

uncertainty estimates.

Table 6

Selected absolute importances of 16O.a

Response ith pair ENDF/B-VII.1 JENDL-4.0u

jth pair Iij (%
2) Iij (%

2)

UO2

D1
16O, rs 3.48 � 10�1 2.60 � 10�1

D2
16O, rs 6.76 � 10�2 1.69 � 10�2

f 1
16O, rs 6.72 � 10�5 3.35 � 10�5

f 2
16O, rs 3.32 � 10�4 8.09 � 10�5

MOX

D1
16O, rs 3.67 � 10�1 3.06 � 10�1

D2
16O, rs 4.42 � 10�2 1.10 � 10�2

f 1
16O, rs 2.30 � 10�5 2.69 � 10�5

a Data with relative importances of less than 5% are omitted.

Table 3

Relative uncertainties of the rodded UO2 HZP assembly.

Response Value ENDF/B-VII.1 JEFF-3.2 JENDL-4.0u

Uncertainty (%)

kinf 1.0730 0.728 1.788 0.460

D1 1.3620 cm 1.162 2.961 1.158

D2 0.3618 cm 0.351 0.298 0.149

Rs;1!2 0.0145 cm�1 1.152 1.041 0.833

Ra;1 0.0129 cm�1 0.716 1.402 0.615

Ra;2 0.1352 cm�1 0.208 1.265 0.184

mRf;1 0.0087 cm�1 0.783 0.357 0.504

mRf;2 0.1939 cm�1 0.782 0.348 0.445

f 1 1.0180 0.0368 0.0130 0.0225

f 2 1.3700 0.0540 0.111 0.0230

Table 4

Relative uncertainties of the unrodded MOX HFP assembly.

Response Value ENDF/B-VII.1 JEFF-3.2 JENDL-4.0u

Uncertainty (%)

kinf 1.1080 0.570 1.398 0.814

D1 1.4580 cm 0.918 2.998 1.102

D2 0.3188 cm 0.308 0.332 0.171

Rs;1!2 0.0116 cm�1 0.975 1.127 0.842

Ra;1 0.0155 cm�1 0.590 1.080 0.665

Ra;2 0.2900 cm�1 0.244 0.930 0.394

mRf;1 0.0119 cm�1 0.536 1.201 0.526

mRf;2 0.4547 cm�1 0.666 1.103 0.688

f 1 0.9881 0.0176 0.0497 0.0199

f 2 1.3830 0.0598 0.146 0.0997

Table 5

Maximum relative importances for the shortlisted materials.

Material ENDF/B-VII.1 JEFF-3.2 JENDL-4.0u

Relative importance (%) / response

UO2
1H 40.4 / D2 65.6 / f 1
natO 54.4 / D2 73.3 / D2
natZr 98.5 / Ra;2
109Ag 44.9 / f 2
157Gd 7.2 / f 2
235U 83.0 / mRf ;2 84.9 / Rs;1!2
238U 16.9 / Ra;1 30.5 / D2 40.9 / D1

MOX
1H 62.4 / Rs;1!2 46.6 / Rs;1!2
natO 43.5 / D1 28.6 / D2
natZr 95.9 / D1
238U 17.2 / mRf ;1 9.8 / D2 49.1 / D1
239Pu 63.4 / mRf ;2 88.8 / mRf;1 59.7 / mRf ;2
240Pu 10.8 / f 2 52.3 / kinf
241Pu 17.2 / mRf ;1 32.0 / mRf ;1
242Pu 25.9 / Ra;1
241Am 6.1 / D2 6.3 / D2

aMaximum relative importances of less than 5% are omitted.
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� For JEFF-3.2 the isotopes 90,92,94Zr have uncertainty estimates.

These cover, roughly, 86% of natural abundance, 27% of thermal

capture cross section and 78% of thermal elastic scattering cross

section.

� For JENDL-4.0u only 90Zr has uncertainty estimates. These

cover half of natural abundance, only 2.8% of thermal capture

cross section and no elastic scattering since there are no esti-

mates for its uncertainty. The covariances of the scattering reac-

tion include estimates for the inelastic reaction only.

The differences are not explained by the presence of con-

stituents in the elemental evaluations, since the NDL with the most

constituents with uncertainty estimates has the smallest con-

tributions to the uncertainties.

The apparent several-orders-of-magnitude differences in con-

tributions from both scattering and effective capture of JEFF-

3.2 to the other two NDLs are not expected, and seem unreal-

istically large. The large differences are also observed for responses

not included in the table. The difference between JEFF-3.2 and

ENDF/B-VII.1 would be even larger if JEFF-3.2 had uncertainty

estimates for all the isotopes of natural zirconium.

The origin of large uncertainties in JEFF-3.2 seems to be 90Zr,

which has uncertainties of dozens of per cent for the main reaction

channels. The isotopes 92Zr and 94Zr have uncertainties of less than

a dozen per cent, being in the same order-of-magnitude as the

uncertainties in ENDF/B-VII.1.

The uncertainties from one isotope in JENDL-4.0u are larger

than the combined uncertainties of all zirconium isotopes in

ENDF/B-VII.1, and differ by a factor of 5–200. Including informa-

tion from other experimental data and nuclear models might bring

the uncertainties closer to current ENDF/B-VII.1 values, and

including omitted experimental data might bring ENDF/B-VII.1

uncertainties closer to current JENDL-4.0u values.

Kodeli and Snoj (2012) found that SCALE 6.0 and JENDL-4.0

predict uncertainties within an order-of-magnitude for the effec-

tive multiplication factor of KRITZ-2 critical experiment due to
90Zr. The uncertainty estimates in SCALE 6.0 are based on the

low-fidelity covariances (Little et al., 2008).

4.3.3. Uranium-235

The cross section covariances in ENDF/B-VII.1 are based on

experimental data and nuclear model calculations, the covariances

of m are based on experimental data, and the covariances of v are

based on experimental data and nuclear model calculations.

Notably the covariances of mt carry over from ENDF/B-V. The cross

section covariances in JENDL-4.0u are based on experimental

data, nuclear model calculations and assumed uncertainties,

depending on the piece of nuclear data and energy region. In some

cases the evaluators have increased the uncertainties after formal

uncertainty quantification. The covariances of m are based on

experimental data, but the uncertainty has been doubled after

the analysis. The covariances of v are based on experimental data

and nuclear model calculations. The JENDL-4.0u covariances are

revised from JENDL-4.0 due to unrealistically large uncertainties

Table 7

Selected absolute importances of natZr.a

Response ith pair ENDF/B-VII.1 JEFF-3.2 JENDL-4.0u

jth pair Iij (%
2) Iij (%

2) Iij (%
2)

UO2

kinf
natZr, rc 1.56 � 10�5 2.99 � 10+0 2.95 � 10�3

D1
natZr, rs 2.22 � 10�3 8.45 � 10+0 1.16 � 10�2

Ra;2
natZr, rc 8.72 � 10�6 1.57 � 10+0 4.20 � 10�5

mRf;2
natZr, rc 6.47 � 10�7 1.17 � 10�1 3.12 � 10�6

f 2
natZr, rc 6.38 � 10�8 1.16 � 10�2 3.16 � 10�7

MOX

D1
natZr, rs 2.49 � 10�3 8.62 � 10+0 1.36 � 10�2

f 1
natZr, rs 6.14 � 10�7 2.22 � 10�3 3.59 � 10�6

a Data with relative importances of less than 80% for JEFF-3.2 are omitted.

Table 8

Selected absolute importances of 235U.a

Response ith pair ENDF/B-VII.1 JENDL-4.0u

jth pair Iij (%
2) Iij (%

2)

UO2

kinf
235U, m 3.40 � 10�1 6.46 � 10�2

kinf
235U, v 3.75 � 10�2 2.74 � 10�2

kinf
235U, rc 2.62 � 10�2 1.91 � 10�2

kinf
235U, rc 1.22 � 10�2 1.18 � 10�2

235U, rf

kinf
235U, rf 1.15 � 10�2 1.29 � 10�2

D1
235U, v 6.92 � 10�1 5.14 � 10�1

Rs;1!2
235U, v 7.46 � 10�1 5.91 � 10�1

Ra;1
235U, v 2.80 � 10�1 2.26 � 10�1

Ra;2
235U, rf 2.68 � 10�2 2.68 � 10�2

Ra;2
235U, rc �1.67 � 10�2 �1.67 � 10�2

235U, rf

Ra;2
235U, rc 1.61 � 10�2 1.61 � 10�2

mRf ;1
235U, m 2.44 � 10�1 2.17 � 10�2

mRf ;1
235U, v 1.46 � 10�1 8.17 � 10�2

mRf ;1
235U, m 4.20 � 10�2

238U, m

mRf ;1
235U, rf 3.36 � 10�2 8.52 � 10�2

mRf ;2
235U, m 5.07 � 10�1 9.66 � 10�2

mRf ;2
235U, rf 8.50 � 10�2 8.50 � 10�2

mRf ;2
235U, rc 1.25 � 10�2 1.25 � 10�2

235U, rf

f 1
235U, v 4.97 � 10�4 3.87 � 10�4

f 2
235U, rf 2.87 � 10�4 2.87 � 10�4

f 2
235U, rc �1.79 � 10�4 �1.79 � 10�4

235U, rf

f 2
235U, rc 1.74 � 10�4 1.74 � 10�4

f 2
235U, v 1.11 � 10�4 9.06 � 10�5

a Data with relative importances of less than 5% are omitted.

Table 9

Selected absolute importances of 238U.a

Response ith pair ENDF/B-VII.1 JEFF-3.2 JENDL-4.0u

jth pair Iij (%
2) Iij (%

2) Iij (%
2)

UO2

kinf
238U, rc 6.28 � 10�2 2.01 � 10�1 6.40 � 10�2

D1
238U, rs 3.33 � 10�2 3.87 � 10�3 5.51 � 10�1

D2
238U, rs 5.14 � 10�3 2.70 � 10�2 5.14 � 10�3

Rs;1!2
238U, rc 2.86 � 10�2 1.13 � 10�1 2.84 � 10�2

Rs;1!2
238U, rs 2.52 � 10�3 2.77 � 10�5 6.26 � 10�2

Ra;1
238U, rc 8.70 � 10�2 2.31 � 10�1 9.48 � 10�2

Ra;1
238U, rs 1.18 � 10�3 3.03 � 10�6 2.65 � 10�2

Ra;2
238U, rc 7.44 � 10�3 1.61 � 10�2 7.47 � 10�3

mRf ;1
235U, m 4.20 � 10�2

238U, m

mRf ;1
238U, m 9.07 � 10�2 2.31 � 10�2

mRf ;1
238U, rf 1.74 � 10�2 1.36 � 10�7 2.17 � 10�2

mRf ;1
238U, rc 7.04 � 10�3 2.10 � 10�2 7.05 � 10�3

f 1
238U, rs 4.65 � 10�6 4.51 � 10�6 7.92 � 10�5

f 2
238U, rc 7.51 � 10�5 1.28 � 10�4 7.56 � 10�5

MOX

kinf
238U, rc 4.15 � 10�2 1.21 � 10�1 4.32 � 10�2

D1
238U, rs 3.50 � 10�2 3.75 � 10�3 6.01 � 10�1

D2
238U, rs 2.10 � 10�3 1.11 � 10�2 2.09 � 10�3

Rs;1!2
238U, rc 3.13 � 10�2 1.22 � 10�1 3.11 � 10�2

Rs;1!2
238U, rs 2.82 � 10�3 1.32 � 10�5 7.07 � 10�2

Ra;1
238U, rc 4.80 � 10�2 1.17 � 10�1 5.40 � 10�2

Ra;1
238U, rs 1.40 � 10�3 1.73 � 10�6 3.31 � 10�2

mRf ;1
238U, m 5.05 � 10�2 1.27 � 10�2

f 1
238U, rs 3.78 � 10�6 3.23 � 10�7 7.09 � 10�5

a Data with relative importances of less than 5% are omitted.
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(Hernández-Solís et al., 2013a,b). The uncertainties propagated

from the resonance parameters uncertainties seem to coincide

below 500 eV for the evaluations.

The selected absolute importances for 235U are listed in Table 8.

The important contributions from the number of emitted neu-

trons per fission are quite different between the NDLs: the con-

tributions to the uncertainty of the fast neutron production

constant have an order-of-magnitude difference, and the con-

tributions to the uncertainties of the thermal neutron production

constant and the infinite multiplication factor differ by a factor of

5. In both cases JENDL-4.0u claims a better knowledge of the

number of emitted neutrons per fission over the whole energy

region. The ENDF/B-VII.1 covariances seem to be inconsistent:

the relative standard deviations of mt and mp are on the orders of

0.7% and 0.2%, respectively. Assuming that these are correct, the

uncertainty of md needs to be on the order of 77–138% depending

on the correlation coefficient between delayed and prompt

neutrons.

The important contributions from the fission spectrum are

within an order-of-magnitude for all responses.

All thermal responses have the same contributions within

almost three digits from the cross sections. For the thermal dis-

continuity factor and the thermal absorption constant the cross-

reaction covariance between the capture and fission cross sections

diminishes the uncertainty of the responses. Physically the dimin-

ishing occurs because the responses depend more on the sum of

the cross sections than on the absolute values of the cross sections

and the sum of the cross sections is better known than its partials.

The latter fact is visible in mostly negative correlation between the

cross sections. The other side of the effect is seen for the infinite

multiplication factor and thermal neutron production constants.

The contribution from the effective capture cross section to the

fast absorption constant has an order-of-magnitude difference

between the NDLs. With ENDF/B-VII.1 data, the relative impor-

tance is 4.6%. The absolute importances of ENDF/B-VII.1 and

JENDL-4.0u are 2.39 � 10�2%2 and 2.76 � 10�3%2, respectively.

The difference seems to origin from large differences of the uncer-

tainties of radiative capture cross section: in ENDF/B-VII.1 the

uncertainty is 30–40% between 7 keV and 500 keV, while in

JENDL-4.0u the uncertainty is only 2–4% in the same energy

range.

The contribution from the fission cross section to the fast neu-

tron production constant is within an order-of-magnitude for the

NDLs.

4.3.4. Uranium-238

The cross section covariances in ENDF/B-VII.1 are based on

experimental data and nuclear model calculations, and the

Fig. 7. Relative covariance matrix of 238U(n,f) cross section for ENDF/B-VII.1.
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covariances of m are based on experimental data. The cross section

covariances in JEFF-3.2 are based on experimental data and cover

only the energy region below 100 keV. The cross section covari-

ances in JENDL-4.0u are based on experimental data, nuclear

model calculations and assumed uncertainties, depending on the

piece of nuclear data and energy region. In some cases the evalua-

tors have increased the uncertainties after formal uncertainty

quantification. The covariances of m are based on experimental

data. JENDL-4.0u covariances are from the revised NDL. The

uncertainties propagated from the resonance parameters uncer-

tainties seem to coincide below 20 keV for ENDF/B-VII.1 and

JENDL-4.0u.

The selected absolute importances for 238U are listed in Table 9.

The important contributions from the number of emitted neu-

trons per fission are within an order-of-magnitude for ENDF/

B-VII.1 and JENDL-4.0u for all responses in both UO2 and MOX

assemblies. The importances of ENDF/B-VII.1 are larger than

the importances of JENDL-4.0u by a factor of 5.

The important contributions from the effective capture cross

section are within an order-of-magnitude for all NDLs for all

responses in both UO2 and MOX assemblies. However, the impor-

tances of JEFF-3.2 differ by a factor of 2–4 to the other NDLs

and for the fast responses the differences would be even larger if

JEFF-3.2 had quantified uncertainties above 100 keV.

The important contribution from the fission cross section is

within an order-of-magnitude for ENDF/B-VII.1 and JENDL-

4.0u, but different by several orders-of-magnitude for JEFF-3.2.

The uncertainty is smaller in JEFF-3.2, but the effect would be

diminished if the uncertainties were fully quantified. The covari-

ances in the used group structure are illustrated in Figs. 7–9. The

partial quantification is apparent in JEFF-3.2 and the larger

uncertainties in the other NDLs. The differences between the

NDLs in the best-estimates seem to be smaller than in the

uncertainties.

The important contributions from the scattering cross section to

thermal responses are within an order-of-magnitude for ENDF/

B-VII.1 and JENDL-4.0u. The importances of JEFF-3.2 differ

by a factor of 5 to the other NDLs. However, for the fast responses

the order-of-magnitude differences between the NDLs are not

exceptions. The importances of JENDL-4.0u are larger than the

importances of ENDF/B-VII.1 by a factor of 17–25. The difference

is at least partly explained by the larger uncertainty of JENDL-

4.0u in neutron duplication and the negative correlation between

the elastic and inelastic cross sections in ENDF/B-VII.1, which is

missing in JENDL-4.0u. In this case the differences between

JEFF-3.2 and the other NDLs would be diminished if JEFF-3.2

had uncertainty estimates for the whole energy region. There are

no qualitative differences between the UO2 and MOX assemblies.

Fig. 8. Relative covariance matrix of 238U(n,f) cross section for JEFF-3.2.
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The difference between JEFF-3.2 and the other NDLs is partly

explained by the energy regions with unquantified uncertainties.

4.3.5. Plutonium-239

The cross section covariances in ENDF/B-VII.1 are based on

experimental data and nuclear model calculations, and the covari-

ances of m are based on experimental data. The origin of covari-

ances of v is not documented. The cross section covariances in

JEFF-3.2 are based on experimental data and cover only the

energy region below 2.5 keV. The cross section covariances in

JENDL-4.0u are based on experimental data, nuclear model

calculations and assumed uncertainties, depending on the piece

of nuclear data and energy region. In some cases the evaluators

have increased the uncertainties after formal uncertainty quan-

tification. The covariances of m are based on experimental data,

and the covariances of v are based on experimental data and

nuclear model calculations. The JENDL-4.0u covariances are from

the revised NDL. The uncertainties propagated from the resonance

parameters uncertainties seem to coincide below 2.5 keV for

ENDF/B-VII.1 and JENDL-4.0u.

The selected absolute importances for 239Pu are listed in

Table 10.

The important contributions from the number of emitted

neutrons per fission are within an order-of-magnitude for ENDF/

B-VII.1 and JENDL-4.0u for all responses in both UO2 and MOX

assemblies. The importances of ENDF/B-VII.1 are larger than

the importances of JENDL-4.0u by a factor of 5.

The important contributions from the fission spectrum are

within an order-of-magnitude for all responses.

The important contributions from cross sections of ENDF/

B-VII.1 and JENDL-4.0u are within an order-of-magnitude for

all responses, and in many cases the same within almost 3 digits.

In the thermal region the contributions from the total scattering

cross section are larger by a factor of 10–12 for JEFF-3.2 than for

the other NDLs. The uncertainty of the elastic scattering cross sec-

tion is between 3% and 5% for JEFF-3.2 in the thermal region,

while it is less than 1% for the other NDLs. In the thermal region

the contributions from the fission cross section are within an

order-of-magnitude.

The cross-reaction contributions are mostly within an order-

of-magnitude between JEFF-3.2 and the other NDLs, except

the contribution to the thermal absorption constant. In the fast

region the differences are larger and would be even larger if the

uncertainties in JEFF-3.2 were quantified in the whole energy

region.

The different signs between JEFF-3.2 and the other NDLs for

the contribution to the uncertainty of the thermal discontinuity

factor is interesting: the correlation between the effective capture

and fission cross sections is mostly positive for JEFF-3.2 while it

is negative in the other NDLs.

Fig. 9. Relative covariance matrix of 238U(n,f) cross section for JENDL-4.0u.
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4.3.6. Plutonium-240

The cross section covariances in ENDF/B-VII.1 and JENDL-

4.0u are based on experimental data and nuclear model calcula-

tions, although the JENDL-4.0u evaluators have increased uncer-

tainties by a few per cent after formal uncertainty quantification.

The selected absolute importances for 240Pu are listed in

Table 11.

All the important contributions are from the effective capture

cross section. The absolute importances differ by factors of 7–18.

There is no large difference between thermal and fast regions.

The order-of-magnitude difference is evident in the uncertainties

of radiative capture cross section, although the cross sections are

quite close to each other.

4.3.7. Plutonium-241

The cross section covariances in ENDF/B-VII.1 are based on

the low-fidelity covariances (Little et al., 2008), except the covari-

ances of the fission cross section above 1 keV are based on

experimental data. The cross section covariances of JENDL-4.0u

are based on experimental data, nuclear model calculations and

assumed uncertainties, and in some cases the evaluators have

increased the uncertainties after formal uncertainty quantification.

The selected absolute importances for 241Pu are listed in

Table 12.

The important contributions from the fission cross section are

within an order-of-magnitude for both NDLs.

The important contributions from the effective capture cross

section have an order-of-magnitude difference: the importances

of JENDL-4.0u are larger by a factor of 7–25. The uncertainty of

radiative capture in the thermal region seems to be under-

estimated in the low-fidelity covariances, as observed by the eval-

uators in the low-fidelity covariance project (Little et al., 2008).

4.3.8. Plutonium-242

The cross section covariances in ENDF/B-VII.1 are based on

the uncertainty estimates from COMMARA-2.0 (Herman et al.,

2011) up to 1 keV. Other covariances seem to be from JENDL-

4.0. The cross section covariances of JENDL-4.0u are based on

Table 10

Selected absolute importances of 239Pu.a

Response ith pair ENDF/B-VII.1 JEFF-3.2 JENDL-4.0u

jth pair Iij (%
2) Iij (%

2) Iij (%
2)

MOX

kinf
239Pu, rf 5.38 � 10�2 2.19 � 10�1 5.42 � 10�2

kinf
239Pu, rc 4.53 � 10�2 5.81 � 10�1 4.51 � 10�2

kinf
239Pu, rc 3.64 � 10�2 2.91 � 10�2 3.66 � 10�2

239Pu, rf

D1
239Pu, v 1.26 � 10�1 2.89 � 10�1

D2
239Pu, rc �4.49 � 10�3 �1.60 � 10�3 �4.51 � 10�3

239Pu, rf

D2
239Pu, rf 4.19 � 10�3 1.50 � 10�2 4.21 � 10�3

D2
239Pu, rc 3.29 � 10�3 3.53 � 10�2 3.30 � 10�3

Rs;1!2
239Pu, v 1.38 � 10�1 3.35 � 10�1

Rs;1!2
239Pu, rc 1.43 � 10�3 7.02 � 10�2 1.25 � 10�3

Ra;1
239Pu, v 5.88 � 10�2 1.43 � 10�1

Ra;1
239Pu, rc 2.26 � 10�3 8.04 � 10�2 1.76 � 10�3

Ra;2
239Pu, rf 5.43 � 10�2 1.62 � 10�1 5.45 � 10�2

Ra;2
239Pu, rc �4.39 � 10�2 �4.46 � 10�3 �4.40 � 10�2

239Pu, rf

Ra;2
239Pu, rc 3.31 � 10�2 4.26 � 10�1 3.32 � 10�2

mRf;1
239Pu, rf 1.06 � 10�1 1.28 � 10+0 1.08 � 10�1

mRf;1
239Pu, v 1.06 � 10�2 1.45 � 10�2

mRf;2
239Pu, rf 2.82 � 10�1 9.21 � 10�1 2.83 � 10�1

mRf;2
239Pu, rc 8.67 � 10�2 2.02 � 10�2 8.68 � 10�2

239Pu, rf

mRf;2
239Pu, m 2.47 � 10�2 4.38 � 10�3

mRf;2
239Pu, rc 2.34 � 10�2 2.67 � 10�1 2.34 � 10�2

f 1
239Pu, v 8.08 � 10�5 1.98 � 10�4

f 2
239Pu, rf 1.81 � 10�3 4.79 � 10�3 1.82 � 10�3

f 2
239Pu, rc �1.10 � 10�3 1.84 � 10�4 �1.10 � 10�3

239Pu, rf

f 2
239Pu, rc 9.05 � 10�4 1.17 � 10�2 9.06 � 10�4

a Data with relative importances of less than 5% are omitted.

Table 11

Selected absolute importances of 240Pu.a

Response ith pair ENDF/B-VII.1 JENDL-4.0u

jth pair Iij (%
2) Iij (%

2)

MOX

kinf
240Pu, rc 1.97 � 10�2 3.47 � 10�1

D2
240Pu, rc 1.07 � 10�3 1.02 � 10�2

Rs;1!2
240Pu, rc 1.24 � 10�2 2.31 � 10�1

Ra;1
240Pu, rc 9.29 � 10�3 1.64 � 10�1

Ra;2
240Pu, rc 4.52 � 10�3 6.83 � 10�2

f 1
240Pu, rc 6.39 � 10�6 4.71 � 10�5

f 2
240Pu, rc 6.29 � 10�4 5.92 � 10�3

a Data with relative importances of less than 5% are omitted.

Table 12

Selected absolute importances of 241Pu.a

Response ith pair ENDF/B-VII.1 JENDL-4.0u

jth pair Iij (%
2) Iij (%

2)

MOX

kinf
241Pu, rc 7.05 � 10�3 5.02 � 10�2

Ra;2
241Pu, rc 8.32 � 10�4 2.09 � 10�2

mRf ;1
241Pu, rf 5.05 � 10�2 8.54 � 10�2

mRf ;2
241Pu, rf 2.22 � 10�2 3.95 � 10�2

f 2
241Pu, rc 9.87 � 10�5 9.73 � 10�4

a Data with relative importances of less than 5% are omitted.
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nuclear model calculations and assumed uncertainties, and in

some cases the evaluators have increased the uncertainties after

formal uncertainty quantification. The JENDL-4.0u covariances

are from the revised NDL.

The selected absolute importances for 242Pu are listed in

Table 13.

The important contributions from the effective capture cross

section have almost an order-of-magnitude difference: the impor-

tances of ENDF/B-VII.1 are larger by a factor of 5–10. The differ-

ence in importances is visible in the uncertainties and is one of the

reasons for the JENDL-4.0 revision.

4.3.9. Americium-241

The covariances of the resonance parameters in ENDF/B-VII.1

are adopted from JENDL-4.0, and other covariances are based on

experimental data and nuclear model calculations. The covariances

of JEFF-3.2 are partial, quantified up to 150 eV. The covariances of

JENDL-4.0u are based on experimental data, nuclear model

calculations and assumed uncertainties, and in some cases the

evaluators have increased the uncertainties after formal uncer-

tainty quantification. The JENDL-4.0u covariances are from the

revised NDL.

The selected absolute importances for 241Am are listed in

Table 14.

The important contribution from the scattering cross section

has an order-of-magnitude difference between ENDF/B-VII.1

and the other NDLs. The uncertainties of the elastic scattering are

about 4.4% for JEFF-3.2, 16% for JENDL-4.0u and over 100% for

ENDF/B-VII.1 in the thermal region. The large resonance parame-

ter uncertainties are one of reasons for JENDL-4.0 revision, and

this can be still seen in the uncertainties of ENDF/B-VII.1.

The important contribution from the effective capture cross sec-

tion has an order-of-magnitude difference between JENDL-4.0u

and JEFF-3.2. The contribution from ENDF/B-VII.1 falls

between the other NDLs. The difference seems to emerge, at least

partly, from a sudden increase in the uncertainty from 4% to 10–

16% above 0.1 eV in JENDL-4.0u, while the uncertainties in

JEFF-3.2 remain at a level of 3–6%.

4.4. Contributions from cross-material covariances

Generally the contributions to uncertainties from cross-mate-

rial covariances are small: the summed relative importances of

cross-material covariances are typically less than 0.1%. However,

in a few cases the cross-material covariances have a larger con-

tribution to the variance.

The relative importances of cross-material covariances in

JEFF-3.2 are small, at most 4.24 � 10�5% for the fast discontinuity

factor of the UO2 assembly and at most 2.45 � 10�4% for the fast

neutron production constant of the MOX assembly.

The larger, over 0.1%, relative importances of the cross-material

covariances are listed in Table 15. For both ENDF/B-VII.1 and

JENDL-4.0u the largest contributions are to the fast neutron pro-

duction constant for both UO2 and MOX assemblies.

For JENDL-4.0u the largest contribution for the UO2 assembly is

solely from the covariance between 235U rf and 238U rf , but has

multiple cross-material contributors for the MOX assembly.

For ENDF/B-VII.1 the largest contribution for the UO2 assem-

bly is mostly from the covariance between 235U m and 238U m,

although the covariance between 235U rf and
238U rf has a small

contribution. For the MOX assembly cross-material covariances

with 239Pu m have the largest contributions.

5. Conclusions

We have surveyed prediction capabilities of three NDLs by per-

forming uncertainty analysis on two PWR assemblies from the

UAM benchmark (Ivanov et al., 2013). The considered responses

were two-group homogenized assembly constants for a steady

state diffusion model.

We have considered intra-material and cross-material covari-

ances, and in general the contributions from cross-material covari-

ances are small. However, for ENDF/B-VII.1 and JENDL-4.0u

these have a moderate contribution to the (fast) neutron produc-

tion constants and for ENDF/B-VII.1 also for other responses.

In many cases the NDLs claim about the same level of knowl-

edge of the nuclear data. However, for several important pieces

of nuclear data the uncertainties have an order-of-magnitude dif-

ferences between the NDLs. These are observed between ENDF/

B-VII.1 and JENDL-4.0u for 238U rs,
240Pu rc and 241Pu rc. In

addition JEFF-3.2 has large uncertainties for 90Zr and JENDL-

4.0u is missing uncertainty estimate for the elastic scattering of
90Zr. The ENDF/B-VII.1 covariances of 235U m seem to be inconsis-

tent, and 242Pu and 241Am of ENDF/B-VII.1 use covariances from

JENDL-4.0, which have been updated in JENDL-4.0u because of

significant errors.

If the evaluations are not erroneous, the differences are a result

of different evaluation methods or different use of expert judg-

ment. In the latter cases the evaluators should verify that they have

included all relevant, both empirical and theoretical, information

in the quantified uncertainties. Uncertainty estimates should

reflect the fact that each estimation method includes systematic,

random and methodological components (Cacuci, 2003).

The uncertainty quantification is not complete in the NDLs. (I)

There are no uncertainty estimates for secondary neutron energy

distributions for reactions other than fission. For non-thermal

energies the information can be, at the expense of volume of the

Table 13

Selected absolute importances of 242Pu.a

Response ith pair ENDF/B-VII.1 JENDL-4.0u

jth pair Iij (%
2) Iij (%

2)

MOX

kinf
242Pu, rc 6.30 � 10�2 7.02 � 10�3

Rs;1!2
242Pu, rc 1.17 � 10�1 1.26 � 10�2

Ra;1
242Pu, rc 9.05 � 10�2 9.44 � 10�3

f 1
242Pu, rc 2.44 � 10�5 3.32 � 10�6

f 2
242Pu, rc 3.58 � 10�4 6.89 � 10�5

a Data with relative importances of less than 5% are omitted.

Table 14

Selected absolute importances of 241Am.a

Response ith pair ENDF/B-VII.1 JEFF-3.2 JENDL-4.0u

jth pair Iij (%
2) Iij (%

2) Iij (%
2)

MOX

D2
241Am, rs 6.48 � 10�3 1.94 � 10�8 9.00 � 10�7

D2
241Am, rc 5.98 � 10�4 2.25 � 10�4 2.44 � 10�3

a Data with relative importances of less than 5% are omitted.

Table 15

Large relative importances of cross-material covariances for each case.a

ENDF/B-VII.1 JENDL-4.0u

Relative importance (%) / response

UO2 1.86 / kinf 2.06 / mRf;1

7.37 / mRf;1

MOX 0.99 / kinf 1.94 / mRf;1

7.33 / mRf;1

0.578 / mRf;2

0.241 / f 1

a Relative importances less than 0.1% are omitted.
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data, encoded in ENDF-6 format, but handling thermal upscatter-

ing might be problematic without a format for File 37. (II) There

are many nuclides whose uncertainties are only partially quanti-

fied. From the viewpoint of our application, the state of uncertainty

quantification is compiled in Table 1. (III) In some cases the uncer-

tainties are quantified only for a partial energy range. Usually this

is because only the uncertainties of resonance parameters have

been quantified. ENDF/B-VII.1
54Cr, and JEFF-3.2

239Pu and
241Am fall into this category. (IV) In some cases there are no uncer-

tainty estimates for a material. Concerning the two test assemblies

there are no uncertainty estimates for 115In, 113Cd and 107Ag in the

three NDLs, although uncertainty estimates in the ZZ-SCALE6/

COVA-44G library suggest that their contribution is important.

For at least one NDL there are no uncertainty estimates for 1H,
16O, all isotopes of natZr, 109Ag, 157Gd and most nuclides in the fuel.

It should be mentioned that the test cases do not contain fission

product poisons. In general, uncertainties of strong absorbers need

to be quantified.

Comparing the overall prediction capabilities of the NDLs is

meaningless, since the uncertainty quantification is not sufficiently

complete in the NDLs. Practical uncertainty propagation can be

performed if simple estimates, for example from the ZZ-

SCALE6/COVA-44G-library (OECD/NEA Data Bank, 2011) or from

the low-fidelity covariance project (Little et al., 2008), are used

when no high-fidelity uncertainty estimates are available.

However, the contribution from simple estimates should remain

low when quantitative results are needed, and even then impor-

tant sources of uncertainty might not be identified, as 16O, 157Gd

and 241Pu demonstrate for our case. Fortunately the number of

high-fidelity uncertainty estimates is larger than in previous

releases of the NDLs and continues to grow as new evaluations

are made with quantified uncertainties and new releases of NDLs

are published.
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a b  s  t r a  c  t

The  objective of the present work is to  estimate breeding ratio, radiation damage rate  and  minor actinide

transmutation  rate of infinite  homogeneous lead  and sodium cooled fast  reactors.  Uncertainty  analysis

is  performed  taking  into  account  uncertainty  in nuclear  data  and composition of  the  reactors.  We use the

recently  released ENDF/B-VII.1 nuclear data  library  and  restrict  the work  to the beginning  of reactor  life.

We  work  under  multigroup approximation.  The  Bondarenko method is used to acquire  effective cross

sections  for the  homogeneous reactor. Modeling error and numerical error  are  estimated.

The  adjoint  sensitivity  analysis is performed to calculate generalized  adjoint fluxes  for  the  responses.

The  generalized adjoint fluxes  are used to  calculate  first  order sensitivities of the responses to model

parameters.  The acquired  sensitivities are used to  propagate uncertainties in the input  data to  find out

uncertainties  in the responses.

We show that  the uncertainty in  model  parameters is the dominant  source  of uncertainty,  followed

by  modeling  error,  input data precision and  numerical error.  The  uncertainty  due  to  composition  of  the

reactor  is low.  We identify  main  sources  of  uncertainty and note that  the low-fidelity  evaluation  of 16O

is  problematic due to  lack  of correlation between total and elastic reactions.

©  2014 Elsevier  B.V.  All  rights  reserved.

1. Introduction

The proven uranium reserves and estimated resources are suffi-

cient to fuel the current open fuel cycle for 250 years (Waltar et al.,

2012). The thermal reactors produce minor actinides, which are

more radiotoxic than natural uranium for hundreds of thousands of

years. The same amount of  uranium would last for 16,000–19,000

years with breeder reactors and closed  fuel cycle (Waltar et  al.,

2012). Fast breeder reactors produce insignificant amounts of

minor actinides and could also transmute the presently accumu-

lated minor actinides. Compared to  thermal reactors the  materials

in fast reactors suffer from high radiation damage.

Nuclear data is  less well known in the neutron spectrum of

fast reactors than in the thermal region. The distribution of our

subjective knowledge of the nuclear data can be interpreted accord-

ing to the Bayesian probability interpretation. Recent evaluated

nuclear data files contain rather complete sets of uncertainty esti-

mates, i.e., evaluations of the second moments of the distribution

∗ Tel.: +358 504331135.

E-mail address: risto.vanhanen@aalto.fi

of our  subjective knowledge of the nuclear data.  This allows us to

estimate the second moments of the posterior distribution of the

responses, giving us meaningful estimates of uncertainty due to  our

limited knowledge of nuclear data.

In addition to  nuclear data also the composition of the reactor is

taken to  be uncertain in this study. The idea  is not new (Greenspan,

1976). Even  though not  applied in  this work, it  should be noted

that calculation of the sensitivities to nuclide concentrations can

be used in optimization of designs against rather arbitrary perfor-

mance parameters.

Since  we are interested in a small number of responses and

the number of parameters needed to calculate them is  large, it

is advantageous to use adjoint sensitivity analysis, also known as

generalized perturbation theory (Usachev, 1964). In this work its

multigroup form is derived and used, i.e., the  so called implicit

sensitivites or spectral fine  structure effects (Greenspan, 1982)

are not  taken into account. The point of  view is then that the

self-shielded multigroup cross sections correctly represent the

underlying physics or that the analysis is  carried in a nearby uni-

verse, where the multigroup presentation is correct. The method

relies on the narrow resonance approximation (Dresner, 1956, and

references therein), which is well  valid within energy spectrum of

http://dx.doi.org/10.1016/j.nucengdes.2014.06.023

0029-5493/© 2014 Elsevier B.V. All rights reserved.
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fast reactors (Waltar et al., 2012). However, the resonance interfer-

ence effect is lost.

2.  Theory

The G group form of the steady state neutron criticality equation

in an infinite reactor can be  written as

�t,g�g =

∑
r /=  f

G∑
g′=1

�r,g′→g�g′ +
1

k

G∑
g′=1

�f,g′→g�g′ for  g  = 1, . . .,  G,

(1)

where k is the  multiplication factor and  ̊ ∈  R
G is the  scalar neutron

flux. The summation over reactions r  runs over all neutron emitting

reactions, except fission. The macroscopic total cross  section �t,g

and the macroscopic group-to-group transfer matrices �r,g′→g are

defined as

�t,g =

I∑
i=1

ni�i,t,g and (2a)

�r,g′→g =

I∑
i=1

ni�i,r,g′→g,  (2b)

where ni is the number density for the ith nuclide and the  micro-

scopic transfer matrix can be  written in the  form

�i,r,g′→g = mi,r,g′�i,r,g′pi,r,g′→g, (3)

where �i,r,g′ is the cross section of the  reaction, mi,r,g′ is  the multi-

plicity and pi,r,g′→g is the  energy group distribution of the emitted

neutrons. Specifically for fission r  =  f  and mi,r,g′ = �i,p,g′ + �i,d,g′ is

the sum of average number of prompt and delayed neutrons emit-

ted per fission.

Reaction rate densities are acquired by taking the standard R
G

inner product between a macroscopic cross section �r ∈ R
G and

the scalar flux:

〈˙r , ˚〉  = ˙
�
r ˚,  (4)

where � denotes the transpose of a  vector. The macroscopic cross

section in Eq.  (4)  is arbitrary. In fact there  are many situations

where it may  be zero for some groups and it may  also include con-

sequences of a  reaction and not just the reaction rate, e.g., heat

deposition rate or  radiation damage rate.

2.1. Model parameters

The  parameters in the model are nuclide concentrations ni, cross

sections �i,r,g,  multiplicities mi,r,g and energy distributions of emit-

ted neutrons pi,r,g′→g.  The parameters include any cross sections and

nuclide concentrations that are needed to  calculate the responses.

Together these N parameters can be  collected to  a vector, denoted

by  ̨ ∈  R
N .

Our subjective knowledge of the nuclide concentrations and

multigroup nuclear data can be  represented as  a joint probability

p(˛1,  . . ., ˛N)d˛1·  ·  ·d˛N (5)

that the true value of each parameter ˛n lies in range (˛n, ˛n + d˛n)

for each n = 1, . . .,  N simultaneously (MacFarlane and Kahler, 2010).

The probability distribution is denoted by  p(˛).

Current nuclear data files contain enough information to  process

the first moments and second (central) moments of the nuclear data

to multigroup form. Assuming that we can estimate the first and

second moments of the  nuclide concentrations we have the first

moments  E(˛)  and the second moments cov  (˛, ˛)  of  the  probability

distribution:

E(˛) = 〈˛〉  and (6a)

cov (˛, ˛) = 〈(˛  −  E(˛))(  ̨ − E(˛))〉, (6b)

Here the brackets 〈 ·  〉 =
∫

·
∫

p(˛)d˛ indicate integration over the

probability distribution.

If  it is  acknowledged that some of the contents of the proba-

bility distribution are non-negative, e.g., nuclide concentrations or

multigroup cross sections, it follows that the distribution cannot

be a normal distribution. Normality is  not  required in the  present

analysis.

2.2. State  variables

The  state variables in  the model are the components of  the neu-

tron flux ˚. The state variables depend on the  parameters through

Eq. (1).  Concatenation of the state variables and parameters is

denoted by e = (˚,  ˛)  ∈  R
G+N .

2.3.  Nominal values

The  nominal values ˆ̨ of the parameters are chosen to be the

first moments E(˛). The nominal values of the state variables ˆ̊

can be calculated by solving Eq. (1)  using  the nominal values of the

parameters. The concatenation of  the  nominal values of the state

variables and parameters is denoted by ê = ( ˆ̊ , ˆ̨ ) ∈ R
G+N .

2.4.  Responses

In  this work we are interested in L ratios of reaction rates, giving

us responses of the  type

Rl(e) =
〈˙rl

,  ˚〉

〈˙pl
,  ˚〉

. (7)

In  principle we are interested in  the full posterior distribution p( R(

e)) for the responses R ∈  R
L . Alas, since  we have not fully charac-

terized our knowledge of the parameters we  cannot calculate the

full posterior distribution.

We  can, however, approximate its first moment by linearizing

the response at the  nominal values of the parameters. The lin-

earized response is

Rl(e) = Rl(ê)  + Sl(ê)(˛  − ˆ̨ )  + O (‖˛  − ˆ̨ ‖2), (8)

where the sensitivity Sl(ê) accounts for both direct effects, due to

variations in the  parameters, and indirect effects, due to variations

in the state variables which arise because of the  variations in  the

parameters. Applying 〈 ·  〉 to both sides of Eq. (8)  gives

E(Rl(e)) = Rl(ê) + O  (‖  ̨ − ˆ̨ ‖2),  (9)

since the  nominal values of the  parameters were chosen to be the

first moments. The result is that the first moments of the responses

are approximately the nominal responses. The approximation is

accurate up to second order in parameters. (Cacuci and Ionescu-

Bujor, 2003)

2.5.  Uncertainty analysis

The  purpose of uncertainty analysis is to estimate the higher

moments of the  responses. Usually it suffices to  calculate the second

(central) moments. An approximation for the  second moments can

be acquired by integrating (Rl(  e) − E(Rl(  e)))(Rm( e) −  E(Rm(  e)))  over
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the distribution of our subjective knowledge of the parameters. This

gives

cov (Rl(e), Rm(e)) = Sl(ê)  cov(˛, ˛)S�
m(ê)  +  O (‖  ̨ − ˆ̨ ‖3),  (10)

which is also known as the  sandwich formula. The approximation is

accurate up to third order in  parameters. (Cacuci and Ionescu-Bujor,

2003)

Calculation of third  and higher moments of the responses is

infeasible with the current evaluations of nuclear data, because

required third and higher moments of  nuclear data are not char-

acterized. However, the first two moments should suffice  if our

knowledge of the data is good enough.

2.6. Sensitivity analysis

A  general tool for the local sensitivity analysis is the directional

derivative called Gâteaux variation (Cacuci, 2003).  The sensitivity of

a response R to variations in the parameters and state variables h =

(h˚,  h˛) ∈ R
G+N ,  respectively, at the point ê ∈ R

G+N can be defined

to  be

ıR(ê;  h) = lim
t→0

1

t

(
R(ê  + th)  − R(ê)

)
.  (11)

For the reaction ratio responses considered in this work the  sensi-

tivities can be represented as

ıRl(ê;  h) = R′l,˚(ê)h˚ + R′l,˛(ê)h˛ = 〈∇˚Rl(ê),  h˚〉 + R′l,˛(ê)h˛

(12)

where  R′
l,  � and R′

l,  �
are the gradients of the  response with  respect

to variations in the state variables and parameters, respectively.

From the viewpoint of  uncertainty analysis it is the  purpose of  the

sensitivity analysis to map  h� to h�, in  first  order, so Eq. (12) can be

expressed linearly in  h�.  This allows construction of the sensitivity

as used in Eq. (8).

In  operator form Eq. (1) can be  written as

A(˛)  ̊ =
1

k(e)
B(˛)˚. (13)

where A : R
G+N → R

G and B  :  R
G+N → R

G are  linear in  ̊ but non-

linear  in  ˛.

The  adjoint system (Cacuci, 2003)  of Eq.  (13) is defined by the

identity〈
˚

†,
(

A(˛) −
1

k(e)
B(˛)

)
˚

〉
=

〈(
A
†(˛)  −

1

k(e)
B
†(˛)

)
˚

†,  ˚

〉
,

(14)

where ˚
†

∈ R
G is an  adjoint flux. The associated bilinear form van-

ishes because boundary of the  phase space  is an empty set.

The  forward sensitivity system (Cacuci, 2003) of Eq.  (13) is

defined as

A(ê)h˚ + A
′
˛(ê)h˛ =

1

k(ê)
B(ê)h˚ +

1

k(ê)
B

′
˛(ê)h˛

−
1

k2(ê)
ık(ê;  h)B( ˆ̨ ) ˆ̊ ,  (15)

which  can be derived by taking Gâteaux variations at ê on  both sides

and noticing that in this case the  derivatives reduce to Jacobians.

The  generalized adjoints �
†
l

for  the  responses Rl are defined as

(A†(˛) −
1

k(e)
B
†(˛))�

†
l

= ∇˚Rl(e) = Rl(e)

(
˙rl

〈˙rl
,  ˚〉

−
˙pl

〈˙pl
, ˚〉

)
,

(16)

where the operator A
†
− 1

k
B
† will be evaluated at the nominal val-

ues of the parameters and is therefore singular. The condition

〈∇˚Rl(ê), ˆ̊ 〉  = 0 is  necessary for a solution to  exist,  but  the reaction

rate  ratios do fulfill this  condition (Greenspan, 1982). The general

solution to  Eq.  (16) is �
†
l

= a˚
†
+  �

†
l,p

, where a ∈ R,  the funda-

mental adjoint ˚† is the solution to corresponding homogeneous

equation and �
†
l,p

is the  particular solution to the  inhomogeneous

equation. It  proves to  be advantageous to  pick the solution which

is orthogonal to the fission source, i.e., 〈�̂
†
l ,  B( ˆ̨ ) ˆ̊ 〉 = 0.

Finally applying Eq. (16) to  Eq.  (12) and using the adjoint prop-

erty of the operators, the  forward sensitivity system and the

orthogonality of the generalized adjoint to the fission source gives

ıRl(ê;  h) = −

〈
�̂

†
l ,

(
A

′
˛(ê) −

1

k(ê)
B

′
˛(ê)

)
h˛

〉
+ R′l,˛(ê)h˛,  (17)

which is linear in h� and can thus be used to construct Sl(ê) of

Eq. (8).

3. Calculations

3.1. LFR  and SFR specification

The  theory is applied to infinite homogeneous lead and sodium

cooled fast reactors at beginning of reactor life.

The LFR case  corresponds to volume averaged hexagonal pin cell

lattice with  pellet radius of 0.330  cm,  gap outer radius of 0.340  cm,

cladding outer radius of 0.455 cm and pin pitch of 1.365 cm.

The fuel is typical mixed  oxide fuel, but contains 3.8% ameri-

cium. The fuel composition is listed in Table 1. Its smeared density is

9.435 g/cm3 at 1500 K. The cladding is  an  approximation of T91  steel

at 900 K with density of 7.87 g/cm3. Isotopes of iron and chromium

are included. The coolant is natural lead at 600 K. Its density is

10.66 g/cm3.

The SFR case corresponds to volume averaged hexagonal pin cell

lattice with pellet radius of 0.300 cm,  gap outer radius of 0.310  cm,

cladding outer radius of 0.345 cm and pin pitch of 0.828 cm.

The fuel is  the  same as  with the  LFR but  the cladding is an

approximation of 15-15Ti steel at 900 K with  density of 7.87 g/cm3.

It contains iron, chromium and nickel. The coolant is 23Na with

0.821 g/cm3 at 600 K.

The relative number density uncertainties correspond to 0.1%

uncertainties for fuel density, 1% uncertainties for coolant and

cladding densities and 1%  uncertainty for  weight fractions without

any correlation. Strictly speaking this is incorrect since the weight

fractions are constrained by  sum of unity, implying that the  number

densities are correlated.

3.2.  Responses

The  responses (quantities of interest) are breeding ratio,

denoted by Rc,fer/Ra,fis;  ratio of damage energy deposition rate in

cladding to heat  deposition rate, denoted by Rdame/Rheat and ratio

of 241Am transmutation rate to heat deposition rate, denoted by

R241/Rheat. The latter two will be referred as  damage rate and trans-

mutation rate, respectively. The transmutation rate is  here defined

to be sum of 241Am capture and fission rates, although captures

leave some 242Am to  be fissioned. The absorption rate of fissile

materials in  the breeding ratio is approximated as  sum of their

capture and fission rate.

3.3.  Nuclear data

The  relevant nuclear data was converted into multigroup

(Bondarenko et al., 1964) form using NJOY (MacFarlane and Muir,

1994; NJOY, 2014) nuclear data processing system. The recently

released nuclear data file ENDF/B-VII.1 (Chadwick et al., 2011) was

used due its rather complete set of covariances. The processing

was performed with 10−5 relative tolerance. The ECCO 1968 group
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Table 1

Composition of the fuel of  the infinite LFR and SFR.

Nuclide Number density

(1/cm-barn)

Uncertainty

(1/cm-barn)

Nuclide  Number density

(1/cm-barn)

Uncertainty

(1/cm-barn)

238Pu 1.0540  ×  10−4 1.0593 × 10−6  235U 4.7284 × 10−5 4.7520 × 10−7

239Pu 2.7336 ×  10−3 2.7472 × 10−5  238U 1.5516 × 10−2 1.5593 ×  10−4

240Pu 1.1997 ×  10−3 1.2057 × 10−5  241Am 8.9569 × 10−4 9.0016 ×  10−6

241Pu 1.8103 ×  10−4 1.8193 × 10−6  16O 4.1917 × 10−2 4.2126 ×  10−4

242Pu 3.3351 ×  10−4 3.3517 × 10−6

structure was used. Energy distributions were assumed to  be  exact

and their covariances were not processed. Cross-material covari-

ances were not included. NJOY does not  calculate covariances for

radiation damage cross section or  heat deposition cross section.

Only indirect contributions are included for  these reactions.

The processed correlation matrices for 207Pb and 208Pb were not

positive semidefinite, which caused unphysical, negative, variances

for the results. These were omitted from the calculations. The prob-

lem is most apparent with  correlation matrix of total and elastic

scattering cross sections.

The  calculated first moments were compared to Monte Carlo

code Serpent (Leppänen, 2007) to assess modeling error caused by

multigroup discretization. NJOY was  used  to produce an ACE library

for Serpent with 5 ×  10−4 relative tolerance. NJOY had trouble pro-

cessing 204,208Pb into dosimetry ACE form and Serpent had trouble

reading the dosimetry file of 206Pb. These were left out of the total

heat deposition for Serpent, but were used in the  transport cycles.

3.4.  Calculation details

Typically  the neutron flux,  the adjoint flux and the generalized

adjoint fluxes are solved using  problem specific algorithms. We  use

standard linear algebra packages (Lawson et al.,  1979; Anderson

et al., 1999; AMD Core Math Library, 2014). This separates the  prob-

lem from its solution algorithm and with  modern routines gives

estimates for upper bounds of numerical error. We  choose to  use

direct solution methods due to the modest size  of the problem.

The  matrices in Eq. (1) are assembled using Eqs. (2)  and (3) with

self-shielded nuclear data.

The neutron fluxes and adjoint fluxes are  solved from Eq.  (13),

which describes a generalized non-symmetric eigenproblem. The

fundamental mode is  recognized by the smallest real and positive

eigenvalue and its inverse is  the multiplication factor. The funda-

mental neutron flux and fundamental adjoint flux  are its right and

left generalized eigenvectors, respectively.

The generalized adjoints are solved from a linear equation,

which is  constructed from Eq. (16) by adding scaled fission source to

all rows of the matrix. The fission source is scaled suitably for  each

row. Note that the inhomogeneous terms are not modified. This

enforces the orthogonality of the generalized adjoints to the fission

source. In practice this  adds one  rank to the  matrix making it  invert-

ible, and therefore allows the use of standard solution algorithms.

The inhomogeneous terms are  assembled from self-shielded cross

sections and the fundamental neutron flux.

The sensitivities for all model parameters are constructed

according to Eq. (17). A sensitivity profile is formed for each model

parameter which is naturally a vector, while a single sensitivity

coefficient suffices for each nuclide concentration.

Finally the uncertainties are propagated by the sandwich for-

mula in Eq. (10). Standard matrix multiplication routines are used

where possible.

4.  Results

The values of the  responses are  listed in Table 2. Both reac-

tors have breeding ratio close to  unity, allowing them to  run by

consuming almost only 238U. However, the infinite reactor does

not account for  any leakage. Due to  the uncertainties we cannot

predict whether either of the reactors would be a breeder or con-

verter. However, with more input data, e.g. integral experiments,

the prediction could be  improved.

The softer spectrum of the SFR is  seen on the radiation damage

energy rate, which is  about third of the LFR value. Since the differ-

ence between the two  is about 3.5 standard deviations, it  is quite

safe to say  that the  LFR would suffer  from more radiation damage.

On  best estimate the LFR is  marginally more effective in trans-

mutation. However, the  difference between the  two  reactors is only

half standard deviation. Therefore we  cannot predict which reac-

tor would be more  effective in  transmutation. If transmutation is

not the main objective, there is  no real difference between the two

reactors.

4.1. Modeling and numerical errors

The modeling error, as  compared to essentially exact result from

Serpent, is quite  low compared to the uncertainties in the input

data. The maximum relative error of the responses in the LFR case

is 1.1% for damage energy rate, when heat deposition in 204,206,208Pb

is omitted in both multigroup and Serpent calculations. The maxi-

mum relative error for  the SFR case is  1.2%  for the damage energy

rate. The other errors are less than 1%.

The numerical error caused by finite  precision (about  15  signifi-

cant decimals) arithmetic is lower than modeling errors for both

the LFR and SFR. While the  matrices were assembled to  almost

full precision, the fundamental mode was  solved to  6 significant

decimals. The large, but not catastrophic, loss of significant digits

occurred regardless of the fundamental mode being well separated

from the other eigenvalues. The angle between the computed and

the exact fundamental neutron flux was  less than 2  × 10−8 rad. The

same bound applies for the fundamental adjoint flux. The general-

ized adjoints were solved to  7 significant decimals. The numerical

errors from assembling sensitivities and uncertainty propagation

were small considering accuracy of the intermediate values from

which they were assembled.

While  no running error analysis is performed, the  results

indicate that modeling error is larger than numerical error and

therefore the  solution is numerically accurate enough. The losses

in significant digits are  rather large and there is room for improve-

ment. However, this does not  imply  that there is need for

improvement.

4.2. Neutron spectra and generalized adjoints

The LFR and SFR neutron spectra and the generalized adjoints

corresponding to  the responses are shown in Figs. 1 and 2, respec-

tively. Note that the division by lethargy emphasizes the  high

energy region. In  both cases the neutron spectrum is  typical with

visible flux depression for energies in large resonances of 54Fe at

7.79 keV, 56Fe at 27.7 keV and 16O at 434 keV and 1 MeV. For the

LFR isotopes of lead have many resolved resonances up  to 1 MeV,

creating less smooth spectrum. For the SFR there is  a large flux

depression near the  huge resonance of 23Na at 2.81 keV.
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Table  2

LFR  and SFR responses.

Case Response Unit Multigroup Monte Carlo

Best-estimate Uncertainty Best-estimatea

LFR Rc,fer/Ra,fis –  1.0575 0.0696 1.0618

LFR  Rdame/Rheat –  1.1342 × 10−3 0.1402 ×  10−3 1.1610 ×  10−3

LFR R241/Rheat 1/MeV 1.4939 × 10−3 0.1398 × 10−3 1.4970 ×  10−3

SFR Rc,fer/Ra,fis –  9.8226 × 10−1 0.8795 × 10−1 9.7326 × 10−1

SFR Rdame/Rheat –  4.4633 × 10−4 0.5457 × 10−4 4.5186 × 10−4

SFR R241/Rheat 1/MeV 1.3445 × 10−3 0.1623 × 10−3 1.3438 × 10−3

a The relative statistical error in MC is less than 10−4.
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Fig. 1. The LFR flux and relative generalized adjoints for the considered responses. Small figure: high energy sign changes of  the generalized adjoints.
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Fig. 2. The SFR flux and relative generalized adjoints for the considered responses. Small figure: high energy sign changes of the generalized adjoints.
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Table 3

Selected contributions of LFR damage rate.

# Parameter pair  Relative total sensitivitiesa (–) Contribution (–)

1 56Fe(n,elastic) 56Fe(n,elastic) −6.4872 −6.4872 1.8084 × 101

2 56Fe(n,elastic) 56Fe(n,total) −6.4872 6.4023 1.7820 × 101

3 56Fe(n,total) 56Fe(n,elastic) 6.4023 −6.4872 1.7820 × 101

4 56Fe(n,total) 56Fe(n,total) 6.4023 6.4023 1.7610 × 101

9 16O(n,elastic) 16O(n,elastic) −4.1881 −4.1881 6.5454 ×  103

13 16O(n,total) 16O(n,total) 4.0663 4.0663 6.1781 ×  103

19 52Cr(n,elastic) 52Cr(n,elastic) −5.1923 × 101 −5.1923 ×  101 8.4719 ×  104

24 52Cr(n,total) 52Cr(n,total) 5.1318 × 101 5.1318 ×  101 4.7426 ×  104

44 56Feb 56Feb 6.6851  × 101 6.6851 ×  101 8.3809 × 105

54 239Pub  239Pub −5.2828 × 101 −5.2828 ×  101 2.6430 × 105

a Integral of relative sensitivity profile over all energies.
b Number density of the nuclide.

The relative generalized adjoint is defined to  be  �
†
l
/Rl(ê).  The

generalized adjoints can be interpreted as  importances of neu-

trons for the corresponding response. If the  sign is positive, every

neutron introduced in the  energy will increase the numerator of

the response more than the denominator. The magnitude carries

information but units depend on the units of the  corresponding

response.

The generalized adjoint of breeding ratio is  negative above

1.3 MeV  for both the  LFR and SFR. This corresponds to the 238U fis-

sion threshold and decrease of its capture cross section. For the  LFR

the breeding ratio increases for every neutron introduced to the

energy range 0.7–630 keV. The sign changes several times in the

region between 630 keV and 1000 keV due to resonances in iso-

topes of lead. For the SFR the breeding ratio increases in the range

0.8–1300 keV due to the lack of resonant parasitic isotopes in this

region. The generalized adjoints are also positive between 0.5  eV

and 7.5 eV, except the SFR between 4.2  eV and 4.6 eV. The positivity

is caused by large resonances of fertile nuclei  and the SFR exception

by 241Pu  resonances. For the  LFR the 241Pu resonance is  not  strong

enough to stop breeding. However, the low energy region has little

practical interest for  a  fast reactor.

Fast neutrons deposit the  most radiation damage energy: for

LFR above 1.7 MeV  the  generalized adjoint is positive and below

0.7 MeV  it is negative. There are few  sign changes in between. For

the SFR the respective energies are noticeable higher: 2.3 MeV  and

1.9 MeV. The change in sign occurs because lower energy neutrons

cause more heat deposition than radiation damage. For the SFR this

transition occurs in  higher energies than for  the  LFR.

The generalized adjoint of transmutation is qualitatively similar

to breeding ratio for both LFR and SFR. However, the low energy

peaks correspond to  absorption resonances of 241Am.

4.3. Sensitivity profiles for the LFR  damage rate

Fig. 3  shows selected sensitivity profiles for the LFR damage

energy rate. The relative sensitivity is defined as  sensitivity scaled

with the ratio of the model parameter and the  response. The

lethargy scaling emphasizes high energy region.

The damage rate is  highly sensitive to  changes in 56Fe elastic

cross section between 1 keV and 1 MeV. An increase in it will cause

damage rate to be reduced. Physically this results from softer spec-

trum, which would be if the elastic scattering would  be increased.

Note that an increase in elastic cross  section effectively decreases

absorption, because as a model parameter the  total cross section

is held constant. The  absolute value of the sensitivity has a  peak

near the 27.7 keV resonance of 56Fe and has  a local minimum in

the 24.4 keV window of 56Fe. The sensitivity profile of total cross

section qualitatively mirrors the one of elastic scattering cross sec-

tion. This occurs mainly because elastic cross section is a large part

of total cross section, because the  elastic cross section is  relatively

smooth  and because elastic downscatter from 56Fe is only a few

groups wide in this energy region.

The sensitivity to elastic scattering of 16O is  negative between

1 keV and 1  MeV with the same implications as for 56Fe. How-

ever, the local minimum and maximum in 27.7 keV and 24.4 keV

are reversed for 16O  even though the cross  sections for oxygen are

smooth in the region. This occurs because the  flux is depressed in

the resonance and peaked in the cross  section window. Again, the

sensitivities to total cross section mostly mirror the  elastic cross

section.

The damage rate is much less sensitive to  elastic and inelastic

cross sections of 239Pu. Both of the  sensitivities are slightly negative.

The behavior is similar to 16O in the local extrema in 27.7 keV and

24.4 keV.

In this case the  generalized adjoint is so smooth that its  effect

is hard to see. The clearest effect comes from the reversal of sensi-

tivities to total and elastic cross section above 1.7 MeV: an  increase

in elastic scattering in the  region causes a reduction in radiation

damage. See the small figure in  Fig. 3.

4.4. Uncertainty analysis

The  uncertainties of the responses are quite high. The LFR dam-

age rate is known worst with  12.3% relative standard deviation and

the LFR breeding ratio  is known best with 6.6% relative standard

deviation. The main contributions to the LFR damage rate are listed

in Table 3. Here “contribution” means absolute value of covariance

between the  parameter pair divided by sum of absolute values of

covariances of all parameter pairs. The value depends on what is

considered to be a parameter pair, but the value can be used to for

importance ranking between the selected parameter pairs. Here we

consider individual reactions and nuclide concentrations.

The LFR is very sensitive to changes in 56Fe  total and elastic cross

sections, but the effects are opposite. Therefore the high  contribu-

tion to  uncertainty of 56Fe total and elastic reactions is diminished

by high correlation between the two  reactions. The effective share

of combined 56Fe total and elastic reactions to  LFR damage rate

variance is only 3.7%. Similar diminishing occurs for  many nuclides,

including 206Pb, 238U and 54Fe.

The  covariances of 16O are  from so called low-fidelity evalua-

tion (Chadwick et al., 2011) and have zero correlation between total

and elastic reactions, and actually the 16O(n,total) gives  the high-

est non-diminished contribution to uncertainties of all responses.

Without uncertainties from oxygen the relative standard devia-

tions for the LFR breeding ratio, damage rate and transmutation

rate would be 3.1%, 4.1%  and 4.0%, respectively. For the SFR these

would be  4.1%, 5.0% and 4.8% in the same order.

The contributions of uncertainties in nuclide concentrations are

mostly small. The highest contributions are 239Pu  with 0.14% con-

tribution to SFR breeding ratio and 241Am with 0.07% contribution
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for the SFR transmutation rate. They  have impact on a few  of the

last printed digits of the uncertainties. The uncertainty caused by

nuclide density uncertainties is likely higher in  high burnup fuels.

However, correlations might diminish the  effect as  with cross sec-

tions.

Most contributions to uncertainties are indirect. This might be

partly result of the infinite homogeneous model which has only

nuclear data dependency but no geometrical contributions, e.g.,

leakage. In the case of  damage rate it results from the fact  that

there were no covariances for damage and heat energy deposition

cross sections.

5.  Conclusions

Uncertainty analysis of infinite lead and sodium cooled fast

reactors has been performed by  treating multigroup constants as

correct representation of the underlying physics. Only the  first

order uncertainty analysis was performed. This  implies that the

calculated uncertainties are not  exact, but they are still usable as

yardsticks.

The uncertainties in  the responses are rather large due to  uncer-

tainties in the ENDF/B-VII.1 nuclear data. In the  case  of  breeding

ratio we cannot predict, with the considered data, whether the

reactors would be breeders or converters. Overall there is no large

difference in the level of  uncertainty between the responses of the

LFR and the SFR, but uncertainties in the SFR case  seem to be larger.

The impact of uncertainties in nuclide concentrations was  small,

but is potentially meaningful for  high burnup fuels.

The uncertainty in model parameters is the dominant source of

uncertainty, being 3−10%. The modeling error is in the order  1%,

input data precision is 10−3 % and numerical error less than 10−4%.

The modeling error, input data precision and numerical error could

be improved on, but there is no need to  do  so until uncertainties in

the model parameters are reduced.

The main sources of uncertainty were analyzed and listed for

the LFR damage rate, i.e., the  LFR  damage energy deposition rate

divided by heat deposition rate. If the value  of  a  response needs

to be known with better precision, a  similar ranking can be per-

formed for the response to recognize which parameters cause the

largest uncertainty. These parameters can then  be measured more

precisely, which improves our capability to  estimate the  response.

The low-fidelity evaluation of 16O  is problematic because it  con-

tains no correlation for  total and elastic reactions in covariances.

This is unphysical because any increase in elastic cross section

also  increases the total cross section. This  should be corrected in

future evaluations since 16O is commonly found  in many reactors,

including typical LFRs and SFRs.

The processed covariance matrices of 207Pb and 208Pb had neg-

ative eigenvalues, i.e., they are not proper covariance matrices. The

negative eigenvalues might results from improper original data in

the evaluation or a problem in the  processing code.
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People encounter uncertainties in their ev- 
eryday lives: the more serious uncertainties 
cause anxiety and the lighter ones bring ex- 
citement. Also computational results in- 
clude uncertainty. Its sources are, among 
other things, idealizations in the computa- 
tional model and inexact knowledge of its 
parameters. These uncertainties can be, 
taking into account different sources of 
uncertainty, managed by quantifying the 
uncertainties of the computed quantities. 
This is called uncertainty analysis. -
            The results of uncertainty analyses are 
at most as good as the data used in them. 
Quality assurance methods aim to ensure 
that the data used in the analyses are ade- 
quate, e.g., have certain properties. This dis- 
sertation takes a look at uncertainty analysis 
applied to reactor physics from the view- 
point of quality assurance. 
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