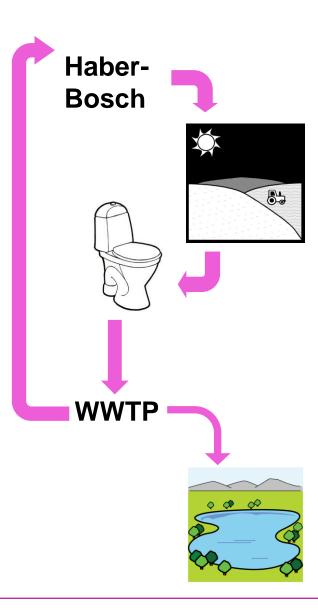


Nitrogen recovery from digester reject water using selective gas-permeable membrane

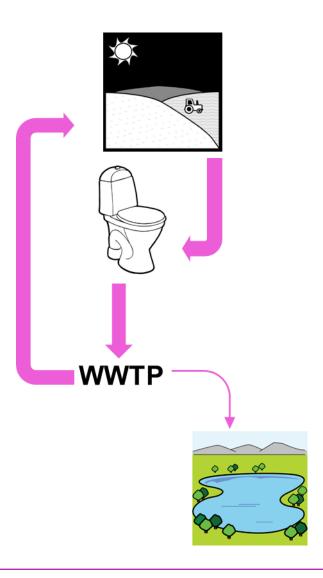
Anna Mikola^{1, *}, Juho Kaljunen¹, Surendra Pradhan¹, Anne-Mari Aurola² and Riku Vahala¹

¹ Aalto University, P.O. Box 15200, FI-00076 AALTO, Espoo, Finland ² Nordkalk Corporation, P.O. Box 21600, Parainen, Finland


*Corresponding author: anna.mikola@aalto.fi

Background

- Increased agricultural production has led to growing nitrogen fertilizer use as well as loads to water bodies.
- Nitrogen fertilizer production is an energy intensive process.
- Removing nitrogen from wastewaters accounts for about 50% of the treatment process energy consumption.

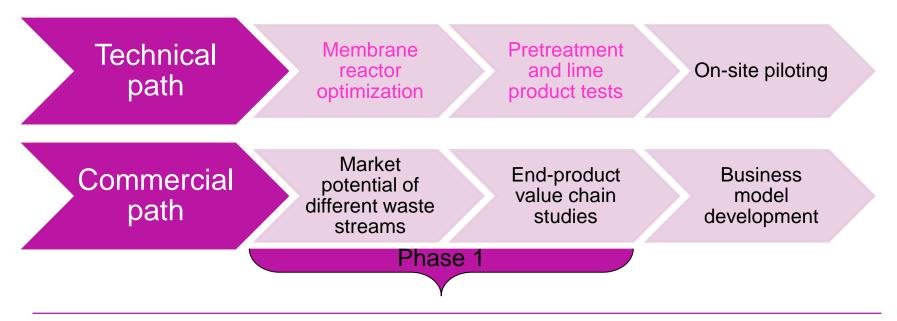


Background

- Increased agricultural production has lead to growing nitrogen fertilizer use as well as loads to water bodies.
- Nitrogen fertilizer production is an energy intensive process.
- Removing nitrogen from wastewaters accounts for about 50% of the treatment process's energy consumption.
- Using wastewater's nitrogen directly would offer significant energy savings and decrease the load to the water environment.

Current challenges with nutrient harvesting

- Cost-effectiveness
- Only nitrogen is often harvested
- Lack of demand for end-products
- Unsuitable end-products for fertilizer industry



NPHarvest project

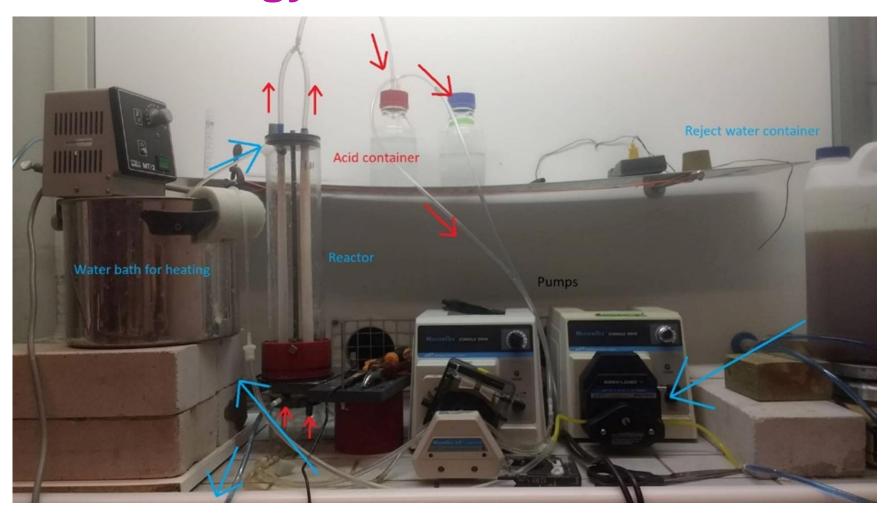
The overall objective:

- an improved nitrogen stripping-absorption process for different concentrated liquid waste streams.
- optimal end-product quality by combining lime addition and phosphorus recovery
- resource optimization by using waste materials for pH control and for recovery

Objectives of Phase 1

Optimize the membrane reactor = nitrogen recovery step

Dates	Number of runs	HRT (h)	Acid flow (I/h)	Acid type	Notes
8.517.5.17	4	8	1-9	H ₂ SO ₄	Acid flow optimization
19.531.5.17	6	2-120	9	H ₂ SO ₄	HRT optimization
20.623.6.17	2	8	9	H ₂ SO ₄	Reject water pH optimization
27.6.17	1	8	9	H ₃ PO ₄	Different acid type
3.7.17	2	28	9	H ₂ SO ₄	Membrane thickness



Methodology – Membrane reactor

Objectives of Phase 1

Find a cost-efficient pretreatment for solid separation

Methodology of Phase 1

- Tests using different solid separation methods
 - Characterization of the water in the lab: settling tests, filtration tests and centrifugation

 Lab-scale pilot tests: Disc filtration, rotating mesh filtration, flotation, ballasted settling

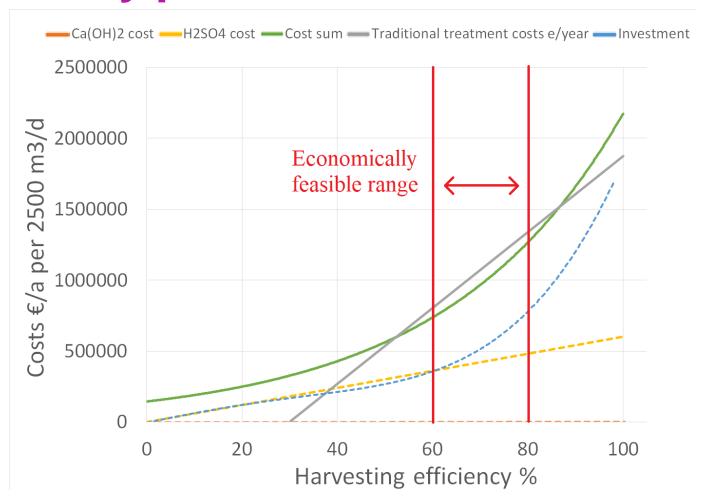
- Study the potential of lime products in solid separation
- Study the possibilities of waste lime products
 - Lime kiln dust (LKD)
 - Recycling of Ca(OH)2

Characteristics of the treated water

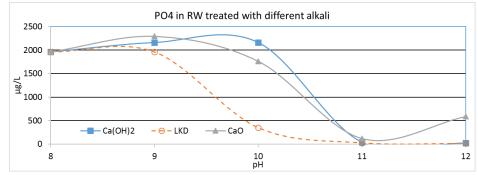
	Average	Min	Max
BHK7ATU (mg/l)	530	320	1140
SS (mg/l)	980	560	4200
Total-P (mg/l)	13	10	47
PO ₄ -P (mg/l)	1.4	0.5	2.7
Total-N (mg/l)	980	820	1250
NH ₄ -N (mg/l)	790	680	900
рН	8	7.5	8.1
Alkalinity (mmol/l)	67	57	77
CODCr sol (mg/l)	1380	860	2100

Optimization of the membrane reactor

- The recovery efficiency improved linearly between 2 to 8-hour hydraulic retention time (HRT)
- Optimal acid circulation rate was determined to be 300 l/h/m² related to reactor membrane surface area.


- The efficiency was also affected by the pH of the reject water.
- Membrane thickness and acid type did not have any significant impact on harvesting efficiency.

Economical assessment of the recovery process



Solid separation tests

- Lime addition efficiently improved reject water's characteristics for solid separation.
- Both disc filtration and ballasted settling showed promising results.

- Waste lime products showed similar results to Ca(OH)₂, but dosed amounts were larger.
- Recycling lime allows for savings of 10% of required lime.
- Dissolved phosphorus was precipitated and could be recovered with the sludge.

Conclusions

- The economic feasibility of a recovery process can rely on the avoided costs from a waste treatment.
- The cost comparison to the alternative treatment at a wastewater treatment plant with a conventional nitrogen removal process showed that the harvesting process can be economically feasible.
- Removal of suspended solids is crucial, but less efficient reactor has also the benefit of being less sensitive to SS in the treated water.

- Lime products offer several benefits in combination to a nitrogen recovery process using membrane stripping:
- While increasing the pH and precipitating the dissolved phosphorus, they improve the solid separation during pretreatment.
- Lime also adds value to the endproduct.

Acknowledgements

This project is financially supported by the Finnish Ministry of Environment.

The project received technical support from:

