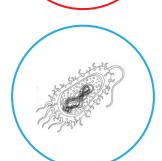


# Master's Programme Life Science Technologies


Prof. Anton Kuzyk Director of the Life Science Technologies programme

# What is Life Science Technologies about?

- Life Tech programme focuses on the research and development of technologies and methodologies used in the life sciences.
- Covers data analysis and modelling, bioinformatics, biomedical engineering, human neuroscience and neurotechnology, bioelectronics and biosensing, synthetic biology and chemistry.
- Builds state of the art research done in Aalto.

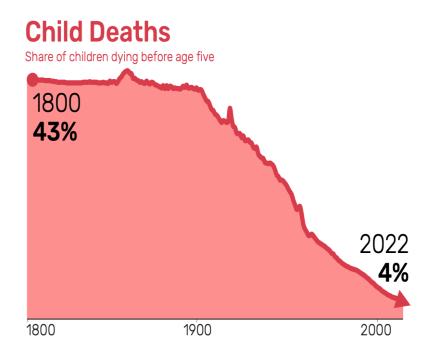











**Aalto University** 



# Global average life expectancy has more than doubled since 1900



Data source: UN WPP (2024); HMD (2024); Zijdeman et al. (2015)



Technological innovations have become an essential part of our lives, well-being, modern healthcare, and bioeconomy.





Technological innovations have become an essential part of modern healthcare, well-being and bioeconomy.





We need experts who can build bridges between life sciences, engineering, and computer science to develop technologies and methodologies that advance diagnostics and therapeutics, transform healthcare, and increase our understanding of complex biological systems.





## Life Science Technologies in Finland

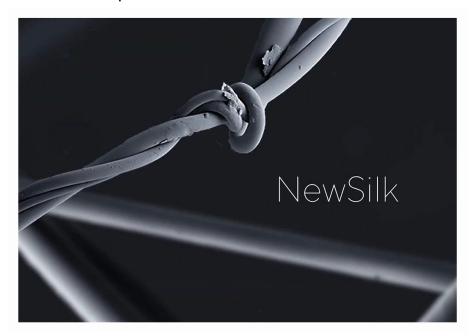
# Finnish company receives EUR 300 million in funding

**Companies** | Medix Biochemica, a manufacturer of monoclonal antibodies and other raw materials for medical tests, has almost quadrupled its revenue under the ownership of development company Devco. The additional financing has been arranged so that the ownership remains in Finland.



September 21, 2023

Bayer made a large-scale investment in Turku – a new EUR 250 million factory was opened in the prevention capital of the world




Finnish Healthtech exports: EUR 2.58 B€ in 2024.

## Life Science Technologies in Finland

Beyond health, ustainability and circular economy

Bio-based production of silk like materials



https://www.aalto.fi/en/newsilk

# Life Science Technologies

# One programme – Three schools – Six majors

structure of the programme

School of Science (SCI)

Bioinformatics and Digital Health

Complex Systems

Biomedical Engineering

Human Neuroscience and Technology

Harri Lähdesmäki

Mikko Kivelä

Matias Palva

Lauri Parkkonen

School of Electrical Engineering (ELEC)

Biosensing and Bioelectronics

Tomi Laurila

School of Chemical Engineering (CHEM)

Biosystems and Biomaterials Engineering

Heli Viskari

# One programme – Three schools – Six majors structure of the programme

Major 60 or 65 credits

Common courses for all majors (10 cr)

Master's thesis 30 credits

Elective studies 30 or 25 credits

- 120 ECTS credits
- Major, master's thesis and elective studies
- To be completed in two years
- Full time programme

#### Curriculum 2024-2026

https://www.aalto.fi/en/programmes/masters-programme-in-life-science-technologies/curriculum-2024-2026

# Life Tech– success stories from our students SCI MSc Thesis Awards

#### SCI Master's thesis award 2022

Fanni Ojala

"Bayesian Survival Analysis to Model Clearance of MRSA Colonization"

Mikko Purhonen

"Computer-Aided Analysis of MGG-stained Bone Marrow Aspiration Samples"

#### SCI Master's thesis award 2023

Anni Hukari

"Mutual information and Pearson correlation on M/EEG time series"

https://www.aalto.fi/en/programmes/masters-programme-in-life-science-technologies/thesis



Fanni Ojala



Mikko Purhonen



Anni Hukari





# Master's Programme Life Science Technologies

Prof. Anton Kuzyk Director of the Life Science Technologies programme



# Biomedical Engineering (BME)

@ Department of Neuroscience and Biomedical Engineering (NBE)







#### Responsible Professor:

Matias Palva

(Deputy: Hanna Renvall)

Responsible Teachers:
Riitta Salmelin Petri Ala-Laurila

Riitta Salmelin
Lauri Parkkonen
Matti Stenroos
Stephane Deny
Mark van Gils
Anton Kuzyk
Jarmo Ruohonen

Koen van Leemput

Ari Koskelainen Pekka Orponen Eero Salli Iiro Jääskeläinen Linda Henriksson Ilkka Nissilä Heikki Nieminen







#### What is **BME**?

"Biomedical engineering (BME) is the application of engineering principles and design concepts to medicine and biology for healthcare purposes (e.g., diagnostic or therapeutic)."

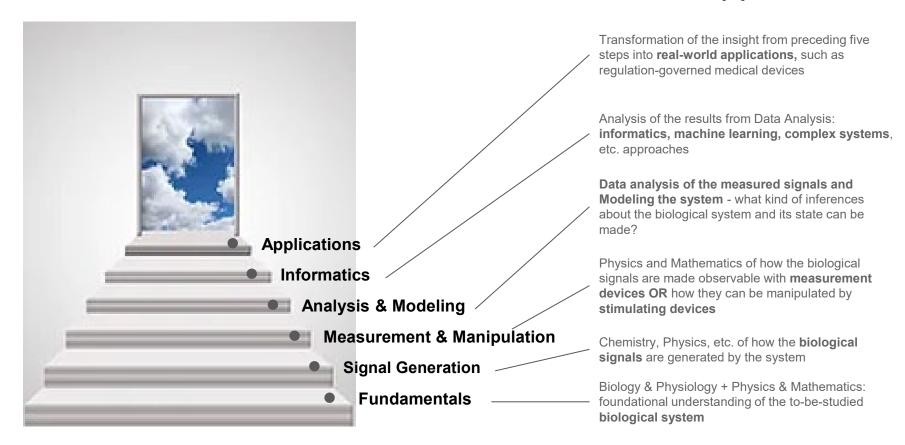
https://en.wikipedia.org/wiki/Biomedical\_engineering

Biomedical engineering builds on a solid basis of physics and technology to characterize, monitor, image and influence biological systems. [...] provides knowledge and skills for developing novel engineering solutions for diagnostic and treatment needs in health

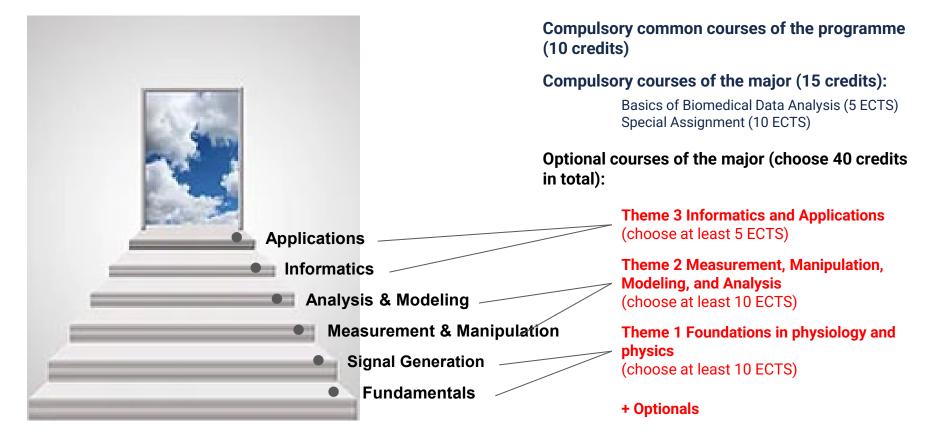


care. https://into.aalto.fi/display/enlst/Biomedical+Engineering+2020-2022




NEWS 03.10.2023

# FINNISH HEALTH TECHNOLOGY IS THE GOLDEN EGG OF EXPORTS THAT NEEDS TO BE NURTURED


The export of health technology products developed in Finland has grown every year over the past 20 years. This has accumulated a surplus of over 16 billion euros. The strengths of Finland's health sector have guaranteed the growth of health technology exports for several years now. This needs to be nurtured.

The growth has been based on the foundation of Finnish health care: high quality research, good education, and the availability of skilled workforce. We can go even better further when health and registry data can be properly accessed and when legislation and its interpretations support innovation and their implementation. Nor

# End-to-end curriculum from fundamentals to applications



# Compulsory & Optional course quotas



## Thank you!

Contact: matias.palva@aalto.fi



# BME Intended Learning Outcomes

#### After completing the Biomedical Engineering major, the students should be able to:

- Demonstrate understanding of the biology-, physiology-, and physics-based foundations of systems relevant for biomedical engineering
- Exhibit understanding of generative mechanisms and measurement methods of biological signals and approaches for manipulation of biological systems
- Apply and implement data pre-processing and analysis methods on biomedical data with understanding of how they describe the underlying biological phenomena.
- Understand and apply computational modeling methods for simulating the biomedical systems of interest
- Understand the prospects and limitations of informatics and machine learning methods to biomedical data as a foundation for development of medical devices and applications
- Create, evaluate, or analyze biomedical solutions in the context of the regulatory paths and stakeholders that differentiate them from health and wellbeing devices

# Curriculum - Compulsory

| Code                                                     | Course name                                      | ECTS | Period/Year |
|----------------------------------------------------------|--------------------------------------------------|------|-------------|
| Compulsory common courses of the programme (10 credits): |                                                  |      |             |
| JOIN-E3100                                               | Life Science<br>Technologies Project<br>Course A | 2    | I/1         |
| JOIN-E3200                                               | Life Science<br>Technologies Project<br>Course B | 8    | III-V/1     |
| Compulsory courses of the major (15 credits):            |                                                  |      |             |
| NBE-E4070                                                | Basics of Biomedical Data<br>Analysis            | 5    | I-II/1      |
| NBE-E4600*                                               | Special Assignment*                              | 10   | I-summer/1  |

## Optional courses of the major (choose 40 credits in total)

# Theme 1 Foundations in physiology and physics (choose at least 10 credits)

| NBE-E4100 | Molecular Biophysics                                                  | 5 | III-V O      |
|-----------|-----------------------------------------------------------------------|---|--------------|
| NBE-E4120 | Cellular<br>Electrophysiology                                         | 5 | I-II E       |
| NBE-E4210 | Structure and Operation of the Human Brain                            | 5 | I-II/1 or 2  |
| NBE-E4060 | Bioelectromagnetism:<br>Fundamentals,<br>Modelling and<br>Application | 5 | I-II/ 2 or 1 |

# Theme 2 Measurement, Manipulation, Modeling, and Analysis (choose at least 10 credits)

| NBE-E4010 | Medical Image Analysis                               | 5 | I-II <del>Q-/</del> 1 or 2 |
|-----------|------------------------------------------------------|---|----------------------------|
| NBE-E4020 | Medical Imaging                                      | 5 | III-IV E                   |
| NBE-E4045 | Functional Brain<br>Imaging                          | 5 | I-II/2                     |
| NBE-E4250 | Mapping, Decoding and<br>Modeling the Human<br>Brain | 5 | III/ <del>1 or 2</del> O   |
| NBE-E4260 | Genesis and Analysis of Brain Signals                | 5 | III-IV/1 or 2              |
| NBE-E4310 | Biomedical Ultrasonics                               | 5 | I-II O                     |
| NBE-E4150 | DNA Nanotechnology                                   | 5 | I-II/2                     |

# Theme 3 Informatics and Applications (choose at least 5 credits)

| NBE-E4080 | Decision Support in Healthcare                                                     | 5 | II / 1 or 2 |
|-----------|------------------------------------------------------------------------------------|---|-------------|
| NBE-E4085 | Behavioral Health<br>Informatics                                                   | 5 | IV / 1      |
| NBE-E4300 | Medical Device<br>Innovation                                                       | 5 | III-V / 1   |
| NBE-E4305 | Biodesign —<br>Innovating Medical<br>Technologies in<br>Multidisciplinary<br>Teams | 5 | V / 1       |

# Optional (+ suitable courses from other LST majors)

| NBE-E4130  | Information Processing in Neural Circuits        | 5     | III-V O       |                                                                                                     |
|------------|--------------------------------------------------|-------|---------------|-----------------------------------------------------------------------------------------------------|
| NBE-E4140  | Neurophysics                                     | 5     | IV-V E        |                                                                                                     |
| ELEC-E8739 | Al in health technologies                        | 5     | I-II / 1 or 2 | Recommended year added                                                                              |
| NBE-E4540  | Special Course in<br>Biomedical<br>Engineering** | 2 - 5 |               | Added range of variation (2 -) and additional information that the course is organised occasionally |



Master's Programme in Life Science Technologies

Biosystems and Biomaterials Engineering Major

Head of Major Heli Viskari Master's Programme in

## Life Science Technologies

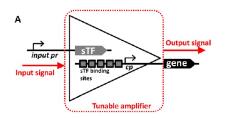


By using **problem-based learning**, the major supports the developments of skills and tools for **solving the complex problems encountered within the fast-changing field of life sciences**. Furthermore, the major supports the development of transferable skills such as organizing personal and teamwork, working as part of a team, and effective communication of scientific knowledge to a forum of peers and experts and to the general public.

The major is designed to give graduates broad training and in-depth knowledge, combined with practical experience.

Starting from the understanding of basic biological phenomena, <u>three distinct</u> <u>tracks</u> link biosciences with information technology, chemistry and biomaterials allowing students to work at the interfaces of these different fields.

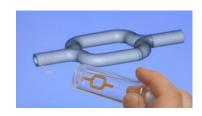



# Knowledge & skills for addressing our most urgent challenges

Complex problems require multidisciplinary approaches

#### **Biosystems Engineering**

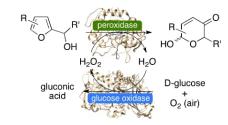
Design of genetic circuits and cellular pathways by using genetic engineering and synthetic biology tools


Computational methods for analysis of biological high-throughput data, understanding the underlying statistical and computational concepts



#### **Biomaterials**

Synthesis of synthetic and biopolymers using chemistry, enzymes or cells and identification of suitable methods for their characterization


Understanding of molecular level phenomena and biophysical properties of materials and their implications on e.g. biomedical applications



#### **Chemistry of Life**

Knowledge of the fundamental concepts of organic chemistry and biology

Understanding of the reactivity of small organic building blocks, design of synthesis reactions and structure analysis, used as basis e.g. for pharmaceutical research





# Parties involved from CHEM

- Department of Biosystems and Bioproducts (Bio2)
  - ➤ Biosystems Engineering (Biotechnology)
- Department of Chemical and Metallurgical Engineering (CMET)
  - ➤ Biomaterials (Polymer science)
- Department of Chemistry and Materials Science (CMAT)
  - ➤ Chemistry of Life (Chemistry related courses)



The Biochemistry group (Prof. Silvan Scheller) develops biotechnological routes to convert CO2 to renewable fuels.

The Biohybrid Materials Group (Prof. Mauri Kostiainen) does research at the interface of chemistry, physics and biochemistry. The long-term aim is to integrate biological and synthetic building blocks in a designed manner to combine the versatility of synthetic materials and highly controlled assembly properties of biomolecules. Of special interest are DNA nanostructures, virus particles and other protein cages that can be repurposed for materials science applications.

The Biomolecular Materials group (Prof. Markus Linder) seeks to <u>understand and</u> <u>utilize biological design strategies for materials</u>. In many cases nature serves as an inspiration for how high-performance materials can be designed. Examples of such materials are the mineralized structures in seashells, silk fiber, and the adhesives of many marine organisms.



The Cellular engineering group, (Assistant Prof. Sesilja Aranko) aims to <u>expand the</u> repertoire of post-translational protein modifications. Particular interest is in modifying proteins relevant for biomaterials, including silk- and collagen-proteins, with the aim of <u>developing novel sustainable yet high-performing biomaterials</u>.

The Enzyme Technology group (Prof. Miia Mäkelä) research focuses on the <u>enzymatic</u> degradation and conversion of wood and other plant biomass to develop sustainable <u>solutions for valuable bioproducts</u>. One of the key interests is the discovery and engineering of new enzyme candidates from the wealth of fungal genome data.

https://www.aalto.fi/en/department-of-bioproducts-and-biosystems



# Biosystems and Biomaterials Engineering Major

#### Compulsory studies of 30 ECTS and three distinctive tracks

| Code       | Course name                                                  | ECTS | Period/Year |
|------------|--------------------------------------------------------------|------|-------------|
| JOIN-E3100 | Life Science Technologies Project Course A                   | 2    | 1/1         |
| JOIN-E3200 | Life Science Technologies Project Course B                   | 8    | III-V / 1   |
| CHEM-E3190 | Metabolism D                                                 | 5    | 1/1         |
| CHEM-E8110 | Laboratory Course in Biosystems and Biomaterials Engineering | 5    | I-II / 1    |
| CHEM-E8120 | Cell Biology D                                               | 5    | 1/1         |
| MS-C1620*  | Statistical Inference*                                       | 5    | III-IV / 1  |

| * If the student has taken this     |
|-------------------------------------|
| course during their bachelor's      |
| degree, the student should take an  |
| additional course from the selected |
| track.                              |

| Track 1: Biosy   | stems Engineering                                        |     |             |
|------------------|----------------------------------------------------------|-----|-------------|
| CS-E5885         | Modeling Biological Networks                             | 5   | II/1        |
| CS-E5875         | High-throughput Bioinformatics                           | 5   | III / 1     |
| CHEM-E3111       | Cell Engineering                                         | 5   | II / 1 or 2 |
| CHEM-E8125       | Synthetic Biology                                        | 5   | IV-V / 1    |
| Select two of th | ne following courses:                                    |     |             |
| NBE-E4150        | DNA Nanotechnology                                       | 5   | I-II/2      |
| CHEM-E3121       | Microbial Physiology D                                   | 5   | II / 1 or 2 |
| CHEM-E2165       | Computer Aided Visualization and Scientific Presentation | 3-5 | IV-V / 1    |
| CHEM-E8135       | Microfluidics and BioMEMS D                              | 5   | III-IV / 1  |

# Biosystems and Biomaterials Engineering Major

| Track 2: Biom     | aterials                          |   |               |
|-------------------|-----------------------------------|---|---------------|
| CHEM-E2100        | Polymer Synthesis                 | 5 | 1/1           |
| CHEM-E2130        | Polymer Properties                | 5 | II / 1        |
| CHEM-E3150        | Biophysical Chemistry D           | 5 | III / 1       |
| ELEC-E8729        | Biomaterials Interfaces           | 5 | I-II / 1 or 2 |
| Select two of the | ne following courses:             |   |               |
| CHEM-E4210        | Molecular Thermodynamics D        | 5 | 11/2          |
| CHEM-E8100        | Organic Structural Analysis D     | 5 | I / 1 or 2    |
| NBE-E4150         | DNA Nanotechnology                | 5 | I-II / 2      |
| CHEM-E8125        | Synthetic Biology                 | 5 | IV-V / 1      |
| Track 3: Chen     | nistry of life                    |   |               |
| CHEM-E8100        | Organic Structural Analysis D     | 5 | 1/1           |
| CHEM-E4170        | Advanced Organic Chemistry        | 5 | II / 1        |
| CHEM-E8125        | Synthetic Biology                 | 5 | IV-V / 1      |
| CHEM-E4116        | Synthesis Strategies and Design D | 5 | III / 1       |
| Select two of th  | e following courses:              |   |               |
| CHEM-E3150        | Biophysical Chemistry D           | 5 | III / 1       |
| ELEC-E8729        | Biomaterial Interfaces            | 5 | I-II / 1 or 2 |
| CHEM-E4230        | Physical Organic Chemistry D      | 5 | II / 2        |
| CHEW-E4230        | , e.ca. e.gae ee, _               |   |               |



# Future employment opportunities

Our graduates find employments in a broad range of functions & industries (Neste, Orion, Thermo Scientific, Blueprint Genetics, startups...) and in research institutions (VTT, universities)



**TESTS** 

**Screening Tests** 

Panels

Whole Exome Sequencing

Single Gene Tests

Variant Specific Testing

blueprintgenetics.com



www.onego.bio

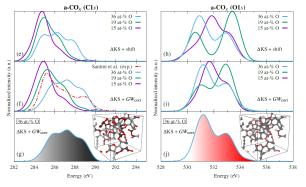
# For us, smart protein is a piece of cake.

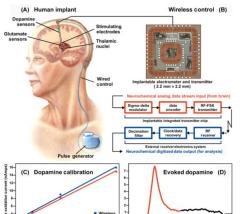
Animal-free egg white production is based on a safe, cost-efficient and environmentally sound technology called precision fermentation.



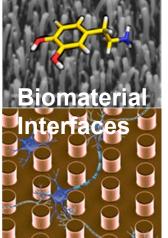
solarfoods.com



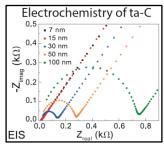

boltthreads.com/technology/microsilk/


Bolt Technology—



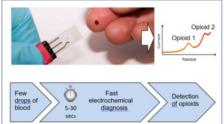


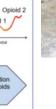

# **Biosensing and –electronics**






#### **Computational studies**



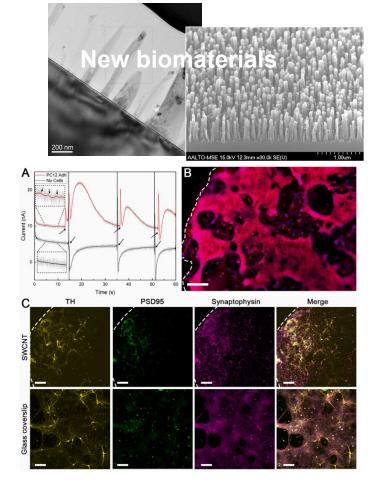


**POC** devices



**Bioelectronics** 










**Biorobotics** 







**Biological measurements** 

| Code       | Course name                                | ECTS | Period/Year |
|------------|--------------------------------------------|------|-------------|
| JOIN-E3100 | Life Science Technologies Project Course A | 2    | 1/1         |
| JOIN-E3200 | Life Science Technologies Project Course B | 8    | III-V/1     |
| ELEC-E8729 | Biomaterial Interfaces                     | 5    | I-II/1      |
| ELEC-E8726 | Biosensing                                 | 5    | III-IV/1    |
| ELEC-E3261 | Characterization of Biomolecules           | 5    | I/1         |
| ELEC-E8734 | Biomedical Instrumentation                 | 5    | II/1        |

#### Theme 1: Signal processing in biosciences

ELEC-E3220

NBE-E4150

NBE-E4100

Semiconductor Devices

DNA Nanotechnology

Molecular Biophysics

| ELEC-E8739 | Al in health technologies    | 5 | I-II/1 or 2 |
|------------|------------------------------|---|-------------|
| ELEC-E9111 | Mathematical Computing       | 5 | I-II/1 or 2 |
| CS-E4715   | Supervised Machine Learning  | 5 | I-II/1 or 2 |
| ELEC-E8743 | Neurorobotics                | 5 | III/1       |
| ELEC-E8744 | Electromagnetic field safety | 5 | III-IV/1    |
| ELEC-E8740 | Basics of Sensor Fusion      | 5 | I-II/1 or 2 |

#### Theme 3: Biomaterials and electrochemistry

5

III-IV/1

Biopolymers

|                                     |                             |           |                      | ELEC-E8725         | Methods of Bioadaptive Technology | 5     | I-II/1 or 2 |
|-------------------------------------|-----------------------------|-----------|----------------------|--------------------|-----------------------------------|-------|-------------|
|                                     |                             |           | CHEM-E4106           | Electrochemistry P | 5                                 | III/1 |             |
|                                     |                             |           |                      | NBE-E4150          | DNA Nanotechnology                | 5     | I-II/1 or 2 |
| Theme 2: Micro- and nanofabrication |                             | NBE-E4100 | Molecular Biophysics | 5                  | III-IV O*                         |       |             |
|                                     |                             |           |                      |                    |                                   |       |             |
| CHEM-E5115                          | Microfabrication            | 5         | IV-V/1               |                    |                                   |       |             |
| CHEM-E8135                          | Microfluidics and BioMEMS   | 5         | III-IV/1             |                    |                                   |       |             |
| ELEC-E3280                          | Micronova Laboratory Course | 5         | I-II/1 or 2          |                    |                                   |       |             |

5

5

III/1

I-II/1 or 2

III-V O\*

CHEM-E2155

# To Whom?

- Background and interest in physics and/or chemistry as well as in electronics and materials science
- Wants to apply fundamental scientific concepts for acquiring information from and/or influencing the cells/tissues/organoids/living species behavior
- Has the desire to work also in the laboratory (computational approaches are also important)
- Translational mindset -> from lab to clinic

#### Biosensing and –electronics

#### **Recent MSc theses:**

- Using Machine Learning to Detect Overtraining Syndrome (2025)
- Electrochemical detection of tetracycline in milk using nanocellulose/carbon nanostructure composite electrodes (2025)
- Drop Coalescence Dynamics and Protein Interactions at the Air-Water Interface (2025)
- Stress level determination from heart rate variability measurements (2024)
- Blood Glucose Prediction Using Wearable Sensors and Dietary Logs (2024)
- Cost-effectiveness in wound care: health economic evidence generation for decision-making and public procurement (2023)

#### **Recent PhD theses:**

- Machine learning and state-space methods for healthcare, speech, and maritime awareness (2025)
- Algorithms for robust human-machine interfacing via surface electromyography (2024)
- Ultrasensitive and selective real-time detection of neurotransmitters for brain-on-a-chip applications (2024)
- Electrochemistry and Surface Properties of Nanostructured Carbon Electrodes and Interfaces (2024)
- Computationally efficient statistical inference in Markovian models (2024)

#### Biosensing and –electronics

Job prospectives and postgraduate studies/academic career

- ✓ Many established large companies and a SME ecosystem
- ✓ Several recent start up's from the participating groups such as Fepod etc.
- ✓ A lot of research collaboration with Universities across the globe































BIOHIT HealthCare





INNOVATOR IN ELECTRONICS



















Tomi Laurila



**Zachary Taylor** 



Stephan Sigg



Ilkka Tittonen




Esa Ollila



Filip Elvander

#### Biosensing and – electronics



Katsuyuki Haneda



**Markus Turunen** 



Ivan Vujaklija



Ilkka Laakso



Simo Särkkä



Networks - a tool for complex systems



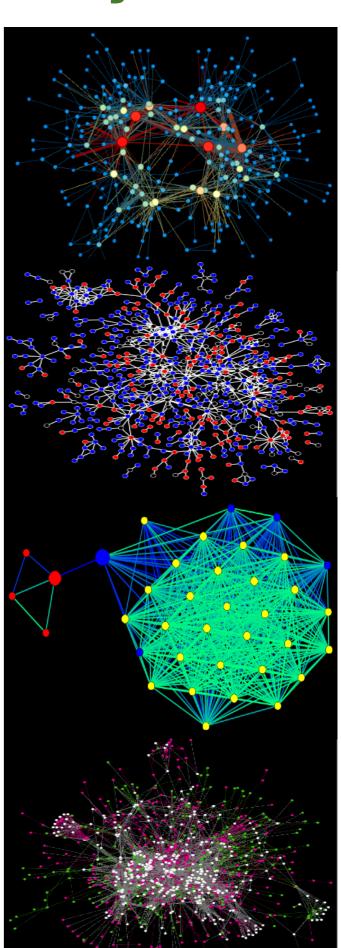
**Nodes** 

Links

Neurons, brain areas

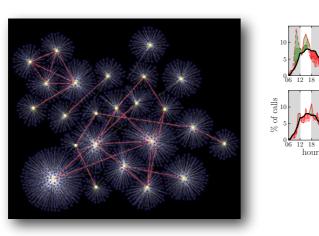
Synapses, axons

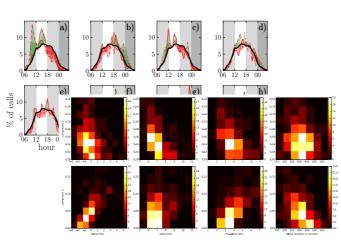
People

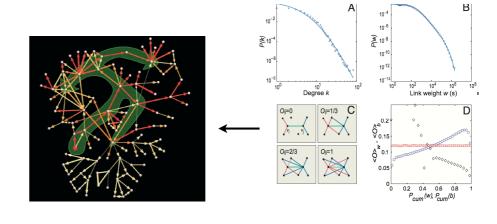

Friendships, phys. contacts, kinships, ...

Species, populations individuals

Genetic similarity, trophic interactions, competition


Genes, proteins

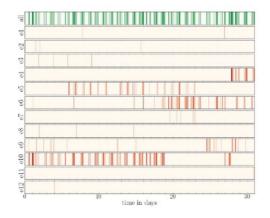

Regulatory relationships



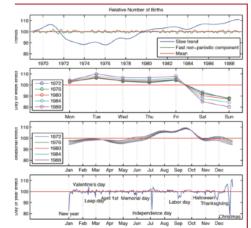

## Complex Systems

The aim is to give the students a strong computational and theoretical background for understanding complex systems, from the human brain to a diversity of biological, technological and social systems.



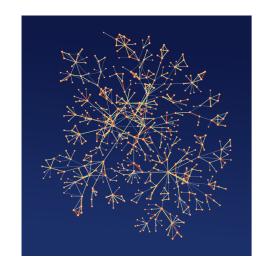




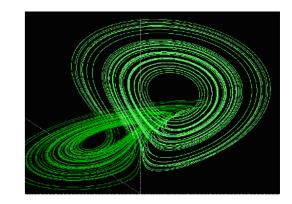



#### What can you study in Complex Systems:



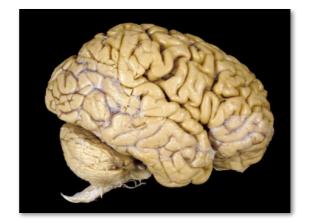

Measuring and interpreting data data visualization, multivariate statistics




Advanced statistics and machine learning

Bayesian methods, ML fundamentals




Systems and modelling

Complex networks, chaos, etc



Application areas

The rest of Life Science Technologies



# 

#### Compulsory courses of the major (pick at least 25 credits)

| CS-E5740 | Complex Networks (recommended)              | 5 | I-II/1   |
|----------|---------------------------------------------|---|----------|
| CS-E5775 | Complex Systems<br>(recommended)            | 5 | 1/1      |
| CS-E5795 | Computational Methods in Stochastics        | 5 | I-II/1   |
| MS-C2111 | Stochastic Processes                        | 5 | 11/1     |
| CS-E5745 | Mathematical Methods for<br>Network Science | 5 | III/1    |
| MS-E2112 | Multivariate Statistical Analysis           | 5 | III-IV/1 |
| CS-E5755 | Nonlinear Dynamics and Chaos                | 5 | III-IV/1 |
| CS-E5700 | Hands-on Network Analysis                   | 5 | IV-V/1   |
|          |                                             |   |          |

#### Choose rest from these:

#### Theme 1: Systems and applications

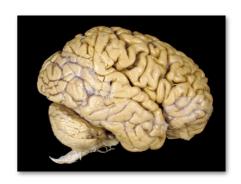
| CS-E5885      | Modeling Biological Networks          | 5 | II/1      |
|---------------|---------------------------------------|---|-----------|
| MS-<br>E1603* | Random Graphs and Network Statistics* | 5 | V/1       |
| CS-C4100      | Digital Health and Human<br>Behaviour | 5 | II/1 or 2 |
| CS-E4730      | Computational Social Science          | 5 | IV-V/1    |

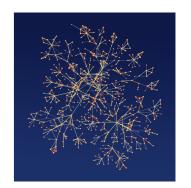
#### Theme 2: Theory

| MS-<br>E1603* | Random Graphs and Network<br>Statistics* | 5 | V/1      |
|---------------|------------------------------------------|---|----------|
| MS-E1050      | Graph Theory                             | 5 | I/1 or 2 |
| CS-E4565      | Combinatorics of Computation             | 5 | V/1      |
| MS-<br>E1052* | Combinatorial Network<br>Analysis        | 5 | II/2     |

#### Theme 3: Data science

| CS-<br>E4840 | Information Visualization   | 5 | IV/1        |
|--------------|-----------------------------|---|-------------|
| CS-E4715     | Supervised Machine Learning | 5 | I-II/2      |
| CS-E5710     | Bayesian Data Analysis      | 5 | I-II/1      |
| CS-E4650     | Methods of Data Mining      | 5 | I-II/1 or 2 |
| CS-E4890     | Deep Learning               | 5 | III-IV/1    |
| CS-<br>E4640 | Big Data Platforms          | 5 | III-IV/1    |


#### Theme 4: Special courses


| CS-E5780<br>** | Special Assignment in Complex Systems** | 5-10 |                                  |
|----------------|-----------------------------------------|------|----------------------------------|
| CS-E5770       | Special Course in Complex<br>Systems    | 1-10 | I-II/1 or 2, or III-<br>summer/1 |

#### Theme 5: Courses from other Life Science Technologies majors

Pick any courses from other Life Science Technologies majors.

#### Students can suggest other application areas: economics, social science, etc.





#### Keywords:

#### MSc theses this year completed at:

University of Helsinki
Aalto University
HUS
Oura
GE healthcare
UPM-Kymmene



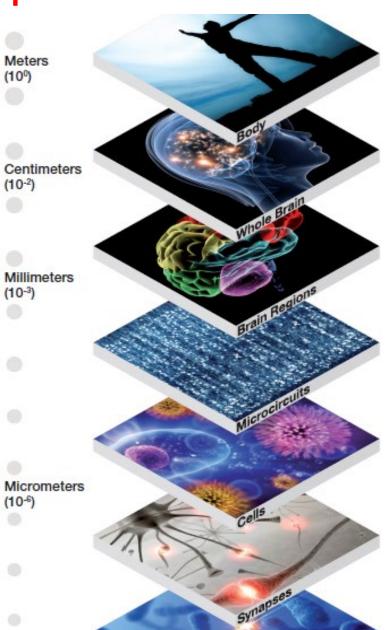
**Abbreviation: NEURO** 

Code: SCI3061

Responsible professor: Lauri Parkkonen (F351, Otakaari 3)

Deputy: Senior Univ. Lecturer Linda Henriksson (F341c, Otakaari 3)

#### **Main themes**

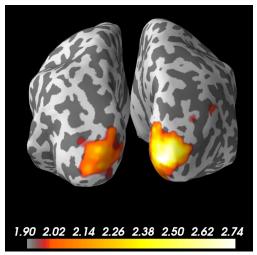

- Structure and function of human brain
- Brain research methods
- Neurotechnologies

#### Courses in ...

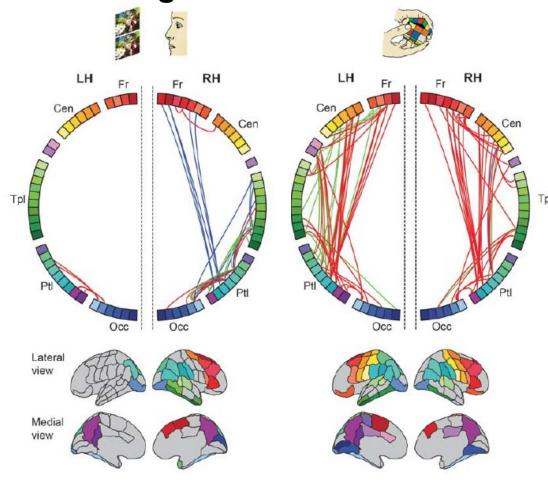
- Neuroscience
- Statistical methods and modeling
  Brain imaging
  Neurotechnology
- Neurotechnology

1025ed Olivesearchi.

**Brain structure Spatial scales** 




**Brain function** Time **Temporal scales** Years  $(10^7)$ Development & Aging Days (10°) Hours  $(10^3)$ Minutes (10<sup>2</sup>)Seconds (10°) Milliseconds  $(10^{-3})$ tion Potentia Microseconds  $(10^{-6})$ 


#### Development of brain imaging: Examples

Instrumentation: Quantum optics for brain measurements





Analysis methods: Estimating functional connectivity between brain regions



#### **Teachers**

#### **Professors**



Lauri Parkkonen (responsible) (adj. prof.)



Petri



Matti Ala-Laurila Hämäläinen Deny



Stephane



Risto Ilmoniemi (emeritus)





Linda Henriksson (NEURO)



liro Jääskeläinen Palva



**Matias** 



Hanna Renvall



Riitta Salmelin



Koen van Leemput



Matti **Stenroos** (BME)

#### Structure of the major

#### **Common LifeTech courses (compulsory; 10 credits)**

| JOIN-E3100 | Life Science Technologies Project Course A |
|------------|--------------------------------------------|
| JOIN-E3200 | Life Science Technologies Project Course B |

#### **Neuroscience and imaging (all compulsory; 30 credits)**

| NBE-E4210 | Structure and Operation of the Human Brain |
|-----------|--------------------------------------------|
| NBE-E4225 | Cognitive Neuroscience                     |
| NBE-E4240 | Advanced Course on Human Neuroscience      |
| NBE-E4045 | Functional Brain Imaging                   |
| NBE-E4600 | Special Assignment                         |

#### **Analysis and modelling (select 15–20 credits)**

| NBE-E4070 | Basics of Biomedical Data Analysis                           |
|-----------|--------------------------------------------------------------|
| NBE-E4260 | Genesis and Analysis of Brain Signals                        |
| NBE-E4060 | Bioelectromagnetism: Fundamentals, Modelling and Application |
| CS-E5710  | Bayesian Data Analysis                                       |
| CS-E4710  | Machine Learning, Supervised methods                         |
| CS-E5740  | Complex Networks                                             |

#### Structure of the major

#### **Supporting courses (select 5–10 credits)**

| UH NEU-104        | Integrative neurobiology (course at Univ. of Helsinki) |
|-------------------|--------------------------------------------------------|
| NBE-E4120         | Cellular Electrophysiology                             |
| NBE-E4130         | Information Processing in Neural Circuits              |
| NBE-E4010         | Medical Image Analysis                                 |
| NBE-E4020         | Medical Imaging                                        |
| NBE-E4300         | Medical Device Innovation                              |
| NBE-E4305         | Biodesign–innovating medical technologies              |
| NBE-E4250         | Mapping, Decoding and Modeling the Human Brain         |
| <b>UH NEU-521</b> | Basic mechanisms of nervous system diseases (UH)       |

Master's thesis (30 credits)

Elective studies (20–30 credits)

#### After graduation....

This major provides not just neuroscience and neurotechnology knowledge but also the ability to work with complex and noisy multi-dimensional data, particularly those from humans!

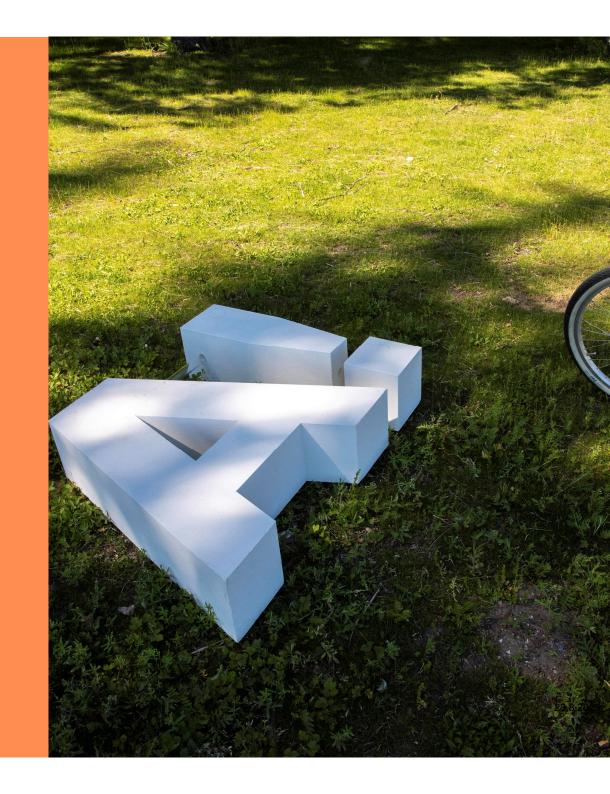
#### PhD studies

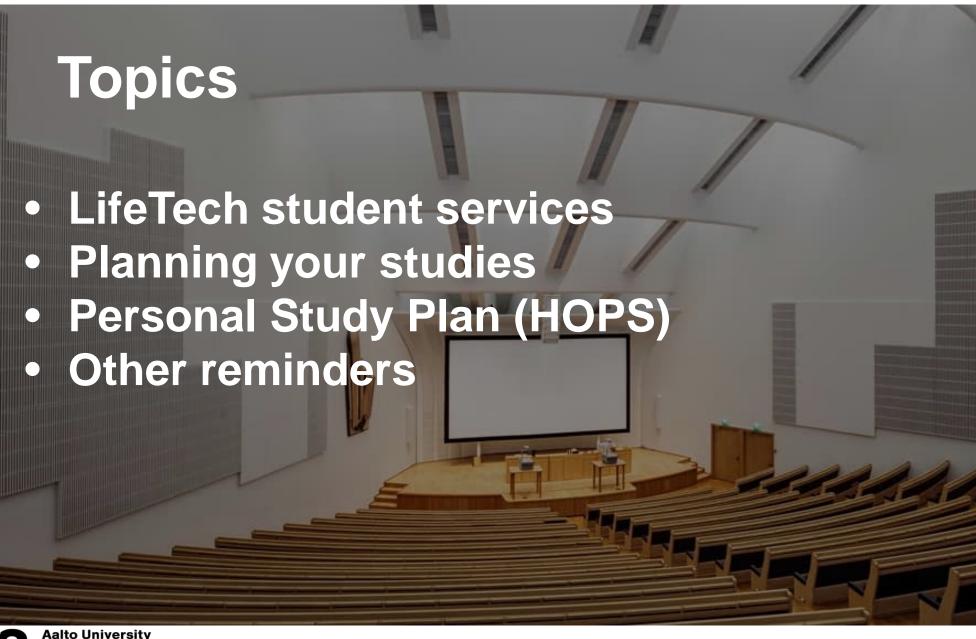


#### Companies

- Health / medical technology
- Data science
- Consultancy
- Game industry
- •

#### Public sector


- Hospitals (e.g. towards medical physicist)
- Research institutes
- ...


rientation for new master udents of Life Science chnologies

Opening words and introduction of the programme Introduction of majors Introduction of student services, information about

services, information about planning studies and other study related topics

Majors' sessions









#### tudent services of LifeTech programme

#### osystems and Biomaterials Engineering

#### Anna Mäkilä

Planning Officer

Study Plan (HOPS) approval

Credit transfer

Exchange learning

agreements



#### osystems and Biomaterials Engineering

#### Juha Oksa Study Coordinator

- Master's thesis process
- Graduation process



#### oinformatics and Digital Health, Biomedical Engineering, Biosensing ar oelectronics, Complex Systems, Human Neuroscience and Technology

#### Päivi Koivunen

**Planning Officer** 

- Study Plan (HOPS) approval
- Credit transfer
- Exchange learning agreements
- Master's thesis process



#### **How to contact Student Services?**





## Study-related information systems to Aalto



## tudy-related information systems at alto

Student guide: <a href="https://www.aalto.fi/en/student-guide">https://www.aalto.fi/en/student-guide</a>

You can find all the information available about your studies and the university guidelines here.

Sisu (Student information system): https://sisu.aalto.fi/

Personal study plan (HOPS), enrolling for courses, completed courses, Transcript of Records and Certificate of Student Status.

MyCourses: https://mycourses.aalto.fi/

Tool for everyday course work and communication. It also contains course descriptions.

MyStudies: https://mystudies.aalto.fi/s/

Book appointment with Aalto staff (e.g., student services, study psychologists)



### Degree structure

#### Sc degree (120 credits)

Major (60 or 65 cr)

- Compulsory courses
- Optional courses

Elective studies (25 or 30 cr, depending on the extent of the major)

Master's thesis (30 cr)

#### aster of Science (Technology) degree

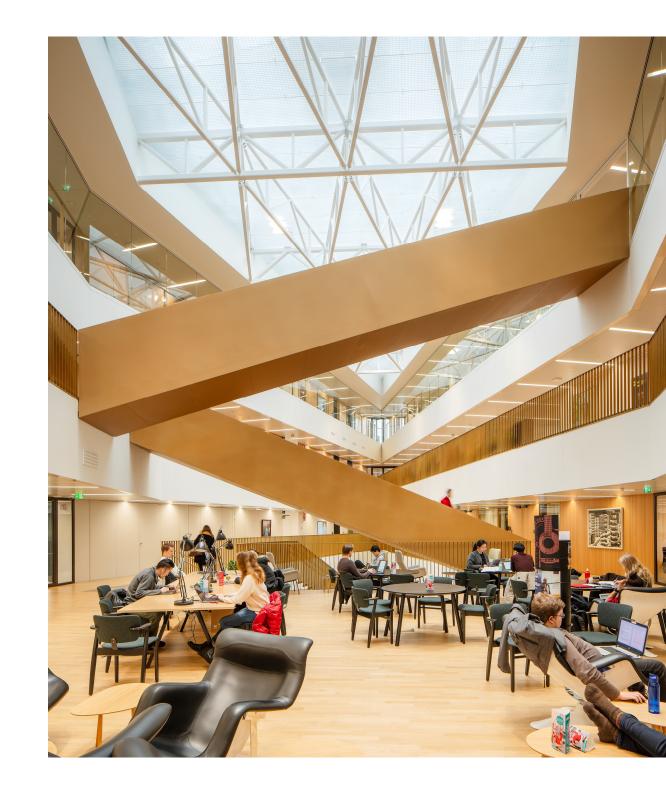


Degree: 120 ECTS credits exactly or as close as possible



Exceeding courses will not appear on the diploma, but it's possible to get a transcript for all completed courses




The programme is planned to be taken in two years, but the study right is valid for four years

## Planning your studies

#### **HOPS**

- Henkilökohtainen
   OPintoSuunnitelma
   = Personal Study Plan
- Your degree = courses in your approved HOPS
- The first HOPS does not need to be the final one
- You can only enrol on courses that are in your <u>primary</u> study plan
- Remember to keep your HOPS up-to-date!





#### Plan your studies



- Follow the curriculum.
- Check also <u>Planning your</u> <u>studies</u> –page.
- Consider the following questions:
  - What do I want from my studies?
  - What skills do I want to develop?
  - What are my career goals?

#### **HOPS** process



- Make your preliminary HOPS for the whole degree at beginning your studies.
- You can change and edit the plan during your studies.
- While selecting the courses for your degree, you should also schedule your studies, i.e. plan in which study period and during which study year you are taking the course. You can use Sisu's <u>Timeline function</u>. This helps you to balance the workload between autumn/spring terms.
- You can register on the courses even before the HOPS is approved.



- Some parts of HOPS require approval, and those parts are followed by "Approval required"
- Elective studies:
  - If you are not yet completely sure about your course choices, you can apply for approval in Sisu later also.
  - Don't apply for approval in Sisu, if you haven't done all the selections for that part.

Students with Aalto scholarship need to have HOPS completed and approved by 30 October is a required DL

#### otifications in Sisu



#### anning your studies

| Code       | Course name                                | ECTS credits | Period/Year |
|------------|--------------------------------------------|--------------|-------------|
| JOIN-E3100 | Life Science Technologies Project Course A | 2            | I/1         |
| JOIN-E3200 | Life Science Technologies Project Course B | 8            | III-V/1     |

#### Choose courses from themes 1 and 2 as is instructed.

#### Theme 1: Bioinformatics and digital health

Choose minimum of 15 ECTS.

| CS-C4100       | Digital Health and Human Behavior | 5 | II/1   |
|----------------|-----------------------------------|---|--------|
| CS-E5875       | High-throughput Bioinformatics    | 5 | III/1  |
| CS-E5885       | Modeling Biological Networks      | 5 | II/1   |
| CS-E4885       | Machine Learning in Biomedicine   | 5 | I-II/2 |
| CHEM-<br>E8120 | Cell Biology                      | 5 | I/1    |

#### anning your studies

- Planning your studies (Student Guide):
- https://www.aalto.fi/en/programmes/masters-programme-in-life-science-technologies/planning-your-studies
- Curriculum (Student Guide): <u>Curriculum 2024-2026 | Aalto University</u>
- Create your HOPS in Sisu:
- https://www.aalto.fi/en/applications-instructions-and-
- guidelines/sisu-instructions-front-page
- Sisu (Student Information System): https://sisu.aalto.fi/

## Compulsory language studies

### Sc degree from Finland

 language studies completed in the BSc degree → no language studies required in MSc degree

### Sc degree abroad

→ 3 credits of foreign language studies

comprehensive and/or upper secondary education in Finland → studies in the language of education, second national language and foreign language may be required

formation about the language requirement will be sent by nail in September

anguage studies are included in the elective studies.

### oreign language

Not Finnish or Swedish

3 credits

English recommended, but other languages accepted

Intermediate or advanced level

Both oral and written part

Courses with letters O and W after the name of the course meet the criteria

Excellent command of English  $\rightarrow$  3 credits of Finnish or 3 credits of Swedish instead

Basic courses accepted

```
s elective studies, you can select additional courses from the major select individual courses from other programmes at Aalto University select a minor select individual courses form other Finnish Universities participate in an international student exchange programme <a href="https://www.aalto.fi/en/other-studies/exchange-studies">https://www.aalto.fi/en/other-studies/exchange-studies</a> include 1-10 ECTS of work experience completed in Finland or abroad.
```

Note! Only work experience gained after 1.8.2025 can be accepted.

You can complete studies also outside your own field of study

All courses are not open to all Aalto students!

Mainly applies to Aalto ARTS courses

As a student, you are responsible for checking whether there are any prerequisites for taking a course or a minor

In practice, a maximum limit on the number of participants may limit course access.

Information on limits to course size and on the order of priority is available on the course information sheet.

- Elective studies must be university level studies that fulfill the degree requirements and in general, studies that are offered as degree studies at the university in question.
- Universities also offer courses that are targeted for a larger audience. The suitability of these studies is evaluated taking into consideration the learning outcomes of the degree that the courses are planned to be included in.
- → If you plan to complete Massive Open Online Courses (MOOCs), please contact Anna (BioSM) or Päivi (other majors) beforehand.



### you need help...

With HOPS or degree structure in general, contact your planning officer

- https://www.aalto.fi/en/program mes/masters-programme-in-lifescience-technologies/contact
- Send an email or book an appointment in MyStudies, do not send a message in Sisu



### ther reminders

Follow your Aalto e-mail!

Read the student newsletter

Contact other Aalto services if needed, for example Starting Point of Wellbeing

https://www.aalto.fi/en/support-for-studying/contact-information-for-learning-services



# Questions?



### EXT: Major specific sessions

- Bioinformatics and Digital Health (Harri Lähdesmäki)
- Major's session will be organized later.
- Biosensing and Bioelectronics (Tomi Laurila)
- Major's session on Fri 29.8. at 12.00 at Micronova, Tietotie 3
- Biosystems and Biomaterials Engineering (Heli Viskari)
  - Major's session on Wed 27.8. at 10.00 in Ke3, Kemistintie 1
- Complex Systems (Mikko Kivelä)
- Biomedical Engineering (Matias Palva) & Human Neuroscience and Technology (Lauri Parkkonen)



Kiitos aalto.fi

# Orientation for new master students of Life Science Technologies

- Opening words and introduction of the programme
- Introduction of majors
- Introduction of student services, information about planning studies and other study related topics
- Majors' sessions









### Student services of LifeTech programme

### **Biosystems and Biomaterials Engineering**

#### Anna Mäkilä

Planning Officer

- Study Plan (HOPS) approval
- Credit transfer
- Exchange learning agreements



### **Biosystems and Biomaterials Engineering**

### Juha Oksa Study Coordinator

- Master's thesis process
- Graduation process



### Bioinformatics and Digital Health, Biomedical Engineering, Biosensing and Bioelectronics, Complex Systems, Human Neuroscience and Technology

#### Päivi Koivunen

Planning Officer

- Study Plan (HOPS) approval
- Credit transfer
- Exchange learning agreements
- Master's thesis process



### **How to contact Student Services?**





# Study-related information systems at Aalto



# Study-related information systems at Aalto

- Student guide: <a href="https://www.aalto.fi/en/student-guide">https://www.aalto.fi/en/student-guide</a>
  You can find all the information available about your studies and the university guidelines here.
- Sisu (Student information system): <a href="https://sisu.aalto.fi/">https://sisu.aalto.fi/</a>
   Personal study plan (HOPS), enrolling for courses, completed courses, Transcript of Records and Certificate of Student Status.
- MyCourses: <a href="https://mycourses.aalto.fi/">https://mycourses.aalto.fi/</a>
   Tool for everyday course work and communication. It also contains course descriptions.
- MyStudies: <a href="https://mystudies.aalto.fi/s/">https://mystudies.aalto.fi/s/</a>
   Book appointment with Aalto staff (e.g., student services, study psychologists)



## Degree structure



### MSc degree (120 credits)

Major (60 or 65 cr)

- Compulsory courses
- Optional courses

Elective studies (25 or 30 cr, depending on the extent of the major)

Master's thesis (30 cr)

### Master of Science (Technology) degree

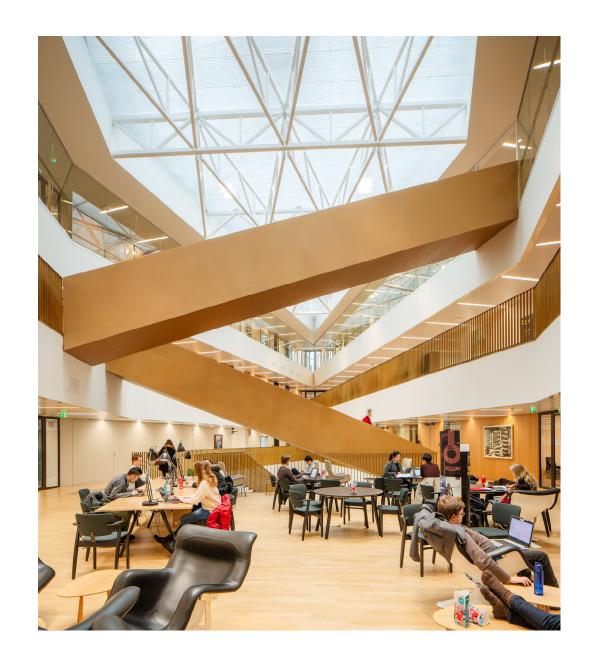


Degree: 120 ECTS credits exactly or as close as possible



Exceeding courses will not appear on the diploma, but it's possible to get a transcript for all completed courses




The programme is planned to be taken in two years, but the study right is valid for four years

# Planning your studies

### **HOPS**

- Henkilökohtainen
   OPintoSuunnitelma
   = Personal Study Plan
- Your degree = courses in your approved HOPS
- The first HOPS does not need to be the final one
- You can only enrol on courses that are in your <u>primary</u> study plan
- Remember to keep your HOPS up-to-date!





#### Plan your studies

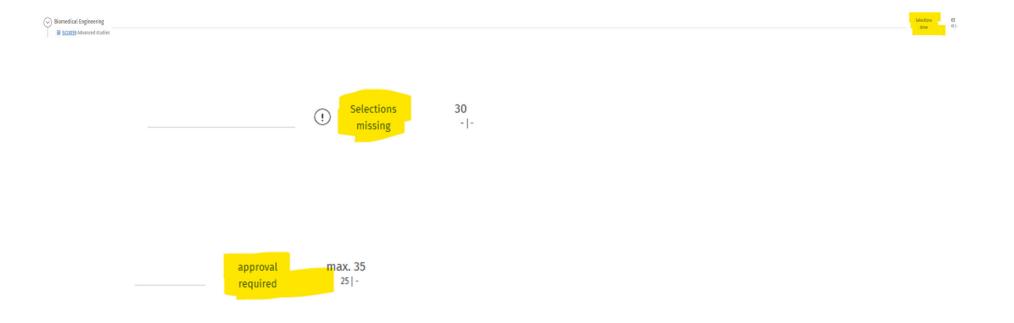


- · Follow the curriculum.
- Check also <u>Planning your</u> <u>studies</u> –page.
- Consider the following questions:
  - What do I want from my studies?
  - What skills do I want to develop?
  - What are my career goals?

#### **HOPS** process



- Make your preliminary HOPS for the whole degree at beginning your studies.
- You can change and edit the plan during your studies.
- While selecting the courses for your degree, you should also schedule your studies, i.e. plan in which study period and during which study year you are taking the course. You can use Sisu's <u>Timeline function</u>. This helps you to balance the workload between autumn/spring terms.
- You can register on the courses even before the HOPS is approved.


#### Get approval



- Some parts of HOPS require approval, and those parts are followed by "Approval required"
- · Elective studies:
  - If you are not yet completely sure about your course choices, you can apply for approval in Sisu later also.
  - Don't apply for approval in Sisu, if you haven't done all the selections for that part.

Students with Aalto scholarship need to have HOPS completed and approved by 30 October is a required DL

### **Notifications in Sisu**





### Planning your studies

| Code           | Course name                                     | ECTS credits | Period/Year |
|----------------|-------------------------------------------------|--------------|-------------|
| JOIN-E3100     | Life Science Technologies Project Course A      | 2            | 1/1         |
| JOIN-E3200     | Life Science Technologies Project Course B      | 8            | III-V/1     |
| Choose co      | ourses from themes 1 and 2 as is instructed.    |              |             |
|                | oinformatics and digital health num of 15 ECTS. |              |             |
| CS-C4100       | Digital Health and Human Behavior               | 5            | II/1        |
| CS-E5875       | High-throughput Bioinformatics                  | 5            | III/1       |
| CS-E5885       | Modeling Biological Networks                    | 5            | II/1        |
| CS-E4885       | Machine Learning in Biomedicine                 | 5            | I-II/2      |
| CHEM-<br>E8120 | Cell Biology                                    | 5            | I/1         |

### Planning your studies

- Planning your studies (Student Guide): <u>https://www.aalto.fi/en/programmes/masters-programme-in-life-science-technologies/planning-your-studies</u>
- Curriculum (Student Guide): <u>Curriculum 2024-2026 | Aalto University</u>
- Create your HOPS in Sisu: <u>https://www.aalto.fi/en/applications-instructions-and-guidelines/sisu-instructions-front-page</u>
- Sisu (Student Information System): <a href="https://sisu.aalto.fi/">https://sisu.aalto.fi/</a>

### BSc degree from Finland

 language studies completed in the BSc degree 

no language studies required in MSc degree

### BSc degree abroad

- comprehensive and upper secondary education abroad
   → 3 credits of foreign language studies
- comprehensive and/or upper secondary education in Finland → studies in the language of education, second national language and foreign language may be required

Information about the language requirement will be sent by email in September

Language studies are included in the elective studies.

### Foreign language

- Not Finnish or Swedish
- 3 credits
- English recommended, but other languages accepted
- Intermediate or advanced level
- Both oral and written part
- Courses with letters O and W after the name of the course meet the criteria

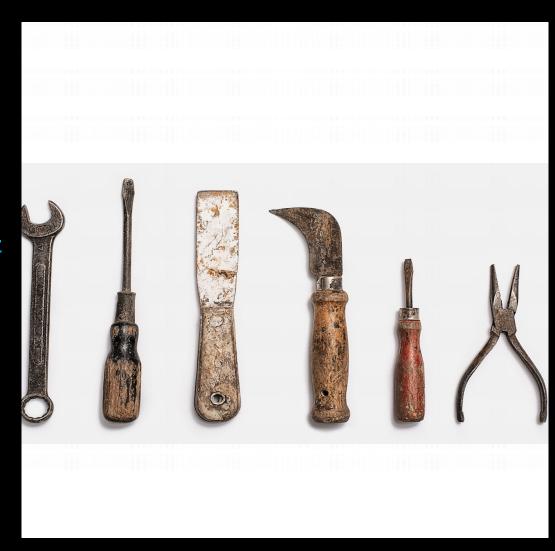
A

- Excellent command of English → 3 credits of Finnish or 3 credits
  of Swedish instead
- Basic courses accepted

As elective studies, you can

- select additional courses from the major
- select individual courses from other programmes at Aalto University
- select a minor
- select individual courses form other Finnish Universities
- participate in an international student exchange programme <a href="https://www.aalto.fi/en/other-studies/exchange-studies">https://www.aalto.fi/en/other-studies/exchange-studies</a>
- include 1-10 ECTS of work experience completed in Finland or abroad.
  - Note! Only work experience gained after 1.8.2025 can be accepted.

- You can complete studies also outside your own field of study
- All courses are not open to all Aalto students!
  - Mainly applies to Aalto ARTS courses
- As a student, you are responsible for checking whether there are any prerequisites for taking a course or a minor
- In practice, a maximum limit on the number of participants may limit course access.
- Information on limits to course size and on the order of priority is available on the course information sheet.


- Elective studies must be university level studies that fulfill the degree requirements and in general, studies that are offered as degree studies at the university in question.
- Universities also offer courses that are targeted for a larger audience. The suitability of these studies is evaluated taking into consideration the learning outcomes of the degree that the courses are planned to be included in.

→ If you plan to complete Massive Open Online Courses (MOOCs), please contact Anna (BioSM) or Päivi (other majors) beforehand.



### If you need help...

- With HOPS or degree structure in general, contact your planning officer
  - https://www.aalto.fi/en/program mes/masters-programme-in-lifescience-technologies/contact
  - Send an email or book an appointment in MyStudies, do not send a message in Sisu



### Other reminders



- Follow your Aalto e-mail!
- Read the student newsletter
- Contact other Aalto services if needed, for example Starting Point of Wellbeing
  - https://www.aalto.fi/en/support-for-studying/contact-information-forlearning-services



# Questions?



#### **NEXT:** Major specific sessions

- Bioinformatics and Digital Health (Harri Lähdesmäki)
  - Major's session will be organized later.
- Biosensing and Bioelectronics (Tomi Laurila)
  - Major's session on Fri 29.8. at 12.00 at Micronova, Tietotie 3
- Biosystems and Biomaterials Engineering (Heli Viskari)
  - Major's session on Wed 27.8. at 10.00 in Ke3, Kemistintie 1
- Complex Systems (Mikko Kivelä)
- Biomedical Engineering (Matias Palva) & Human Neuroscience and Technology (Lauri Parkkonen)



# Kiitos aalto.fi