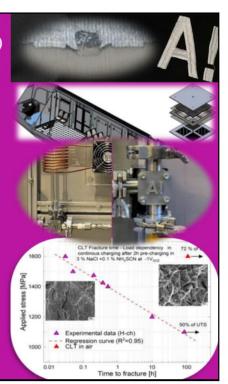
Department of Energy and Mechanical Engineering (EME)

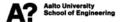

Hydrogen Breakfast Series #5

Standardization & Material challenges in hydrogen transportation & storage

Aalto University School of Engineering Pedro Vilaça

Head of Department of EME Professor on joining of materials and non-destructive testing

Aalto, 9th April 2025



1

Agenda (1/3)

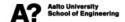
Introduction

- Historical perspective on the contribution by M2P research group of EME department of Aalto, to research in hydrogen technology and economy
- Overview of Aalto infrastructure dedicated for research of hydrogen interaction with engineering materials (with focus on distinct "home-made" equipment)
- Fundaments on the Hydrogen interaction with steels and inherent Hydrogen embrittlement (HE) effect on their mechanical strength

2

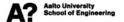
Agenda (2/3)

Hydrogen embrittlement effect on the mechanical strength of steels


- S Artificial neural network-based prediction
- ♥ Overview of ongoing Aalto's research on NER/H2SIPP

Hydrogen-as-a-probe for high-resolution testing of steels

- ⋄ Introduction to concept
- Overview of background research for enhanced reliability
- Application to an ex-service steel component from power plant



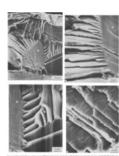
3

Agenda (3/3)

- Aalto's innovation in manufacturing of Fuel Cells / Eletrolyzers
 - Introduction to the **enabler new manufacturing** solutions by EME of Aalto
 - New concept of Multi-Cell Panel (MCP-FC/E) allowing structural integration

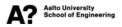
4

Historical perspective on contribution by **Materials and Manufacturing to Products** (M2P) research group of Aalto/ENG/EME to research in hydrogen technology



5

Historical perspective


The origins of research on H-metal interaction at Aalto

H.Hänninen, T.Hakkarainen (1979)

Fractographic characteristics of a hydrogen-charged AISI 316 type austenitic stainless steel. Metallurgical Transactions A. doi: 10.1007/BF02811667

Influence of Nitrogen Alloying on Hydrogen Embrittlement in AISI 304-Type Stainless Steels

SIMO-PEKKA HANNULA, HANNU HÄNNINEN, and SEPPO TÄHTINEN

SIMO-PEKKA HANNULA, formerly with Helsinki University of Technology, Laboratory of Physical Metallurgy, SF-02150 Espoo 15, Finland, is now a Research Fellow with the Department of Materials Sejence and Engineering, Congell University, Ithaca, NY 14853, HANNU HÄNNINEN and SEPPO TAHTINEN are Research Officers, Technical Research Centre of Finland, Metals Laboratory, Metallimiehenkuja 6, SF-02150 Espoo, Finland, Mathematical Materials Laboratory and Manuscript submitted November 1, 1983.

METALLURGICAL TRANSACTIONS A

Aspects of the intertwined long-history of Aalto + VTT cooperation

In Situ Observations on Effects of Hydrogen on Deformation and Fracture of A533B Pressure Vessel Steel

H.E. Hänninen, T.C. Lee, I.M. Robertson, and H.K. Birmbeym

Historical perspective

Research on Hydrogen-to-metal interaction at Aalto

Nuclear programme (FINNUS) supported by STUK and VTT Study of H-metal interaction, local ordering, and defects in nuclear materials using hydrogen-as-a-probe for mechanical spectroscopy technique [1-4]

1990

2005



Overview of the nuclear power plant structural integrity research in Finland

Mechanical Spectroscopy Apparatus:

- Study of transitions corresponding to atomic or molecular motions
- High-sensitivity to the state of the lattice defects in crystals
- Measurement temperature range from 100 K to 1000 K

7

Historical perspective

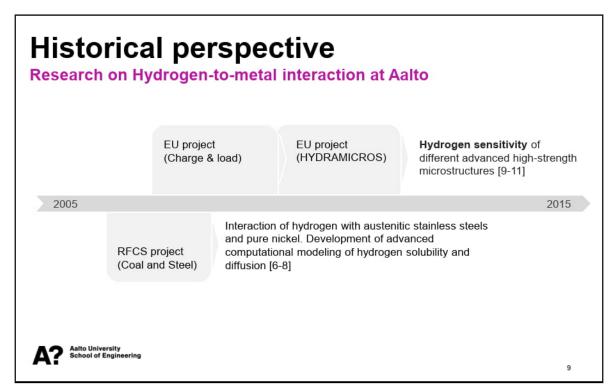
Research on Hydrogen-to-metal interaction at Aalto

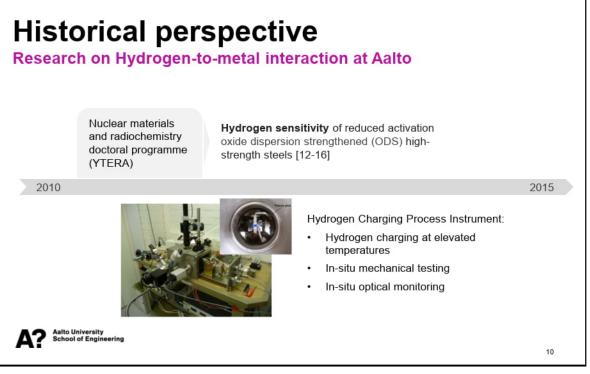
EU project (Charge & load)

Hydrogen embrittlement and delayed fracture of advanced multiphase high-strength steels [5]

2005

2015




Thermal Desorption Spectroscopy (TDS 1) apparatus:

- High-sensitivity study of hydrogen uptake and trapping in steels and alloys
- · Detection of the hydrogen trapping sites in materials
- Measurement temperature range from RT to 1500 K

A2 Aalto University
School of Engineering

8

Historical perspective

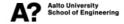
Research on Hydrogen-to-metal interaction at Aalto

Method of quantitative hydrogen sensitivity assessment in business application [23-25]

BF R2B project (QUCAM)

Al based software for quantitative analysis of hydrogen sensitivity of steels:

- TDS data processing
- Startup launched in 2020 (Metmod Oy)


2015 2020

Thermal Desorption Spectroscopy (TDS 2) apparatus:

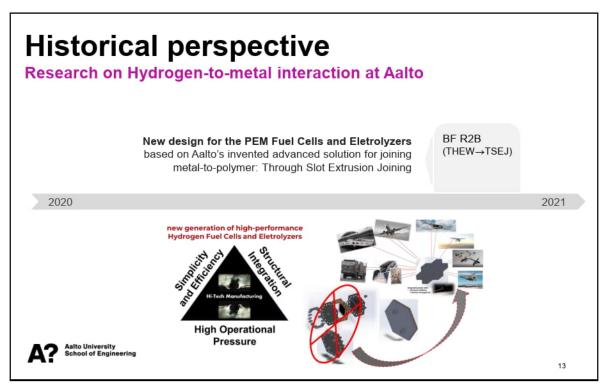
- Automatic specimen loading
- Measurement temperature range from RT to 1100 K

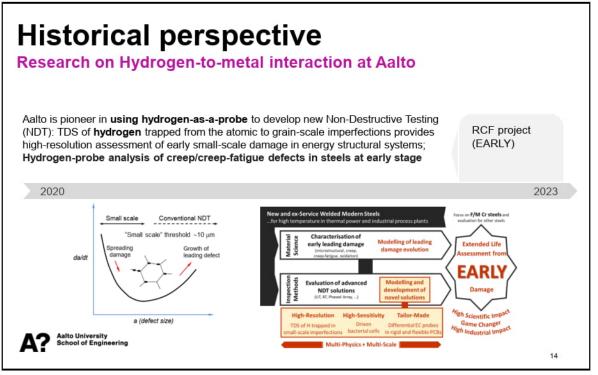
11

Historical perspective Research on Hydrogen-to-metal interaction at Aalto

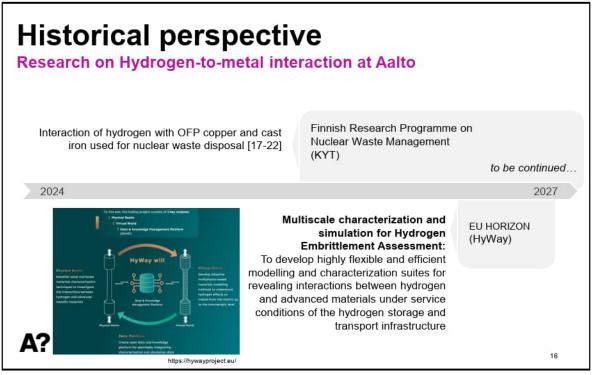
ISA AALTO HydroSafeSteels,

Evaluation of the effects of hydrogen on the mechanical performance of modern ultra high-strength steels (UHSS) for demanding applications


BF project (ISA)


2019 2021

Hydrogen sensitivity of UHSS


12

Historical perspective Research on Hydrogen-to-metal interaction at Aalto Hydrogen Safety and Improved Permit Processes (H2SIPP): To develop strategies to delimit key barriers identified in recent work for the NER project implementation of hydrogen in the Nordic countries: (H2SIPP) · Permit processes and social acceptance · Knowledge transference to society and stakeholders with risk analysis Key-safety features: Materials safety + Safety distances 2023 2026 New Thermal H-Charging equipment: Physisorption only Reliable \Leftrightarrow repeatable H-charging H-safe operation Low cost FI20247181 Aalto Dec 2024

15

Historical perspective

Supporting list of references (1/3)

- Redistribution of alloying elements in electron-irradiated iron-based fcc alloys studied by hydrogen probe mechanical spectroscopy, MATERIALS RESEARCH SOCIETY, 1998.
- Hydrogen-probe mechanical spectroscopy for studying local ordering in concentrated substitutional alloy, Journal of Alloys and Compounds 310, 200–204, 2000.
- A new method for studying thermal desorption of hydrogen from metals based on internal friction technique, Physica Scripta: Topical Issues, T94, 111-120, 2001.
- 4. Interactions of hydrogen in copper studied by internal friction technique, Material Science and Engineering A 370, 218–221, 2004.
- Hydrogen embrittlement and delayed fracture of advanced multiphase high-strength steels, Luxemburg / Publications Office of the European Union (2013) [Report].
- Effect of hydrogen on plastic strain localization in single crystals of nickel and austenitic stainless steel, Proceedings of the 2008 International Hydrogen Conference, 97-104, ASM INTERNATIONAL, 2008.
- Anelastic mechanical loss spectrometry of hydrogen in austenitic stainless steels, Materials Science and Engineering A 521–522, 159–162, 2009.
- Hydrogen solubility and diffusion in austenitic stainless steels studied with thermal desorption spectroscopy, steel research int. 82, No. 13, 2010.

17

17

Historical perspective

Supporting list of references (2/3)

- Role of Nonmetallic Inclusions in Hydrogen Embrittlement of High-Strength Carbon Steels with Different Microalloying, The Minerals, Metals & Materials Society and ASM International, doi: 10.1007/s11661-014-2447-2, 2014.
- Hydrogen effects on fracture of high-strength steels with different micro-alloying, Corrosion Review, doi 10.1515/corrrev-2015-0044, 2015.
- Hydrogen sensitivity of different advanced high strength microstructures (HYDRAMICROS), final report, doi 10.2777/07315, ISBN 978-92-79-45820-0, 2015.
- 12. Comparative study of hydrogen uptake and diffusion in ODS steels, Fusion Engineering and Design 88, 2607 2610, 2013.
- Hydrogen effects on tensile properties of EUROFER 97 and ODS-EUROFER steels, Journal of Nuclear Materials 444, 435

 –440, 2014.
- 14. Hydrogen charging process instrument, Fusion Engineering and Design 100, 142–145, 2015.
- Hydrogen-induced crack nucleation in tensile testing of EUROFER 97 and ODS-EUROFER steels at elevated temperature, Journal of Nuclear Materials 466, 286-291, 2015.
- 16. Investigation of microstructure changes in ODS-EUROFER after hydrogen loading, Journal of Nuclear Materials 468, 355-359, 2016.

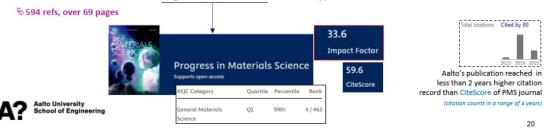
18

Historical perspective

Supporting list of references (3/3)

- 17. Hydrogen-enhanced creep and cracking of oxygen-free phosphorus-doped copper, Scripta Materialia 67, 931–934, 2012.
- 18. Hydrogen-Induced Mechanical Losses in Oxygen-Free Copper, Solid State Phenomena 184, 122-127, 2012.
- Effects of hydrogen and impurities on void nucleation in copper: simulation point of view, Philosophical Magazine, doi: 10.1080/14786435.2014.962642, 2014.
- Hydrogen effects on mechanical performance of nodular cast iron. Corrosion Reviews, 37(5), 441-454. doi: 10.1515/corrrev-2019-0007, 2019.
- 21. Hydrogen embrittlement of nodular cast iron, Materials and Corrosion, doi: 10.1002/maco.202011682, 2020.
- Sulphide-induced stress corrosion cracking and hydrogen absorption of copper in deoxygenated water at 90°C, Materials and Corrosion, doi: 10.1002/maco.202011695, 2020.
- Study of correlation between the steels susceptibility to hydrogen embrittlement and hydrogen thermal desorption spectroscopy using artificial neural network, Neural Computing and Applications, 32:14995

 –15006, 2020.
- Improved Accuracy of Thermal Desorption Spectroscopy by Specimen Cooling during Measurement of Hydrogen Concentration in a High-Strength Steel, MDPI, 2020.
- Resolution adopted by the General Assembly on 25 September 2015, Transforming our world: the 2030 Agenda for Sustainable Development



19

19

Recent publications by Vilaca's team

- M.I.Silva, S.Khakalo, A.Agarwal, R.Pohja, P.Vilaça (2025) Application of hydrogen-as-a-probe to inspect the metallurgical condition and imperfections of a 13CrMo4-5 ex-service steam header component from power plant. Ready to be submitted for publication
- 2. M.I.Silva, P.Auerkari, R.Pohja, T.Andersson, P.Vilaça (2025) On the Ac1 and Ac3 transformation temperatures of 1Cr-0.5 steels. Submitted
- M.I.Silva, G.Sorger, E.Malitckii, P.Vilaça (2024) Hydrogen-as-a-probe applied to investigate the influence of extraction and preparation methods on TDS spectra of 13CrMo4-5 samples. Journal of Materials Science: Metals and Corrosion. doi: 10.1007/s10853-024-10383-3
- 4. M.I.Silva , E.Malitckii , P.Lehto , P.Vilaça (2024) Influence of sample extraction location on thermal desorption spectroscopy from a heat-resistant 13CrMo4-5 steel plate and correlation with microstructure features. Materialia . doi: 10.1016/j.mtla.2024.102130
- R.Pohja, S.B.Holmström, S.Khakalo, P.Auerkari, P.Vilaça (2024) Evolution and criteria for early creep damage. Materials at High Temperatures. doi: 10.1080/09603409.2023.2295599
- M.I.Silva, E.Malitckii, T.G.Santos, P.Vilaça (2023) Review of conventional and advanced non-destructive testing techniques for detection and characterization of small-scale defects. Progress in Materials Science. doi: 10.1016/j.pmatsci.2023.101155

Recent publications by Vilaca's team

Eric Komla Fangnon: recipient of 2024 ENG's Doctoral Thesis Award

- E.Fangnon, E.Malitckii, R.Latypova, and P.Vilaça (2023) Prediction of hydrogen concentration responsible for hydrogen-induced mechanical failure in martensitic high-strength steels. Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2022.11.151
- R.Pohja, P.Auerkari, P.Vilaça (2022) Modelling for creep cavitation damage and life of three metallic materials". Journal of Materials at High Temperatures. doi: 10.1080/09603409.2021.2024420
- E.Fangnon, Y.Yagodzinskyy, E.Malitckii, S.Mehtonen, E.Virolainen, P.Vilaça (2021) Determination of critical hydrogen concentration
 and its effect on mechanical performance of 2200 MPa and 600 HBW martensitic ultra-high-strength steel. Metals. doi:
 10.3390/met11060984
- E.Malitckii, E.Fangnon, P.Vilaça (2020) Evaluation of steels susceptibility to hydrogen embrittlement: A thermal desorption spectroscopy-based approach coupled with artificial neural network. Materials. doi: 10.3390/ma13235500
- E.Malitckii, E.Fangnon, P.Vilaça (2020) Study of correlation between the steels susceptibility to hydrogen embrittlement and hydrogen thermal desorption spectroscopy using artificial neural network. Neural Computing and Applications. doi: 10.1007/s00521-020-04853-3
- 12. E.Fangnon, E.Malitckii, Y.Yagodzinskyy, P.Vilaça (2020) Improved accuracy of thermal desorption spectroscopy by specimen cooling during measurement of hydrogen concentration in a high-strength steel. Materials. doi:10.3390/ma13051252
- 13. E.Malitckii, Y.Yagodzinskyy, P.Vilaça (2019) Role of retained austenite in hydrogen trapping and hydrogen-assisted fatigue fracture of high-strength steels. Materials Science and Engineering: A. doi: 10.1016/j.msea.2019.05.103

21

21

Introduction (2/3)

Overview of Aalto infrastructure dedicated for research of hydrogen interaction with engineering materials

Focus on distinct "home-made" equipment

Aalto's research infrastructure

H interaction with metals: Typical research flow methods

Hydrogen charging (including with in-situ mech testing)

- Electrochemical charging
- · Plasma charging
- · Thermal charging

+ Mechanical testing

- CERT (Cte Ext. Rate Test)
- CLT (C^{te} Load Test)
- Fracture/Fatigue
- Charpy Impact

Note:

- Uniaxial CERT (classic strength testing criteria
 ⇔ yields early-localized strain phenomena)
- Uniaxial CLT (quasi-creep damage phenomena
 ⇔ assessment of long-term safety)

Hydrogen measurement

- Thermal Desorption Spectroscopy (TDS)
- · Mechanical spectroscopy

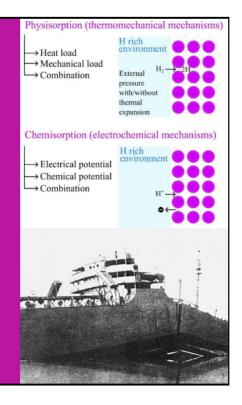
+ Microstructural evaluation

- SEM-EBSD-EDS
- Nano-triboindenter
- Differential Scanning Calorimeter (DSC)

Characterization

- Analytical analysis and FEM modeling
- · Al-based analysis

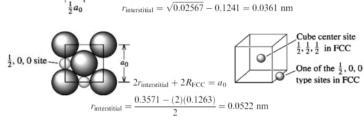
23


23

Introduction (3/3)

Fundaments on:

- H-metal interaction
- Hydrogen embrittlement (HE) effect on mechanical strength of steels


H interaction with steels

Introduction to fundaments

Some Facts:

Lattice parameters in IRON:

- BCC (α-iron):
 - ♦ Radius iron atom, R_{BCC} = 0.1241 nm
 - Lattice size a₀≈ 0.2866 nm
 - $\Rightarrow r_{intersticial} = 0.0361 \text{ nm}$
- FCC (γ-iron):
 - ♥ Radius iron atom, R_{FCC} = 0.1263 nm
 - Lattice size ≈ 0.3571 nm

Hydrogen atom radius is:

♣ R_{C_atom} = 0.077 nm

R_{H_atom} = 0.053 nm (~Bohr radius)

 $\left(\frac{1}{2}a_0\right)^2 + \left(\frac{1}{4}a_0\right)^2 = (r_{\text{interstitial}} + R_{BCC})^2$

 ...fewer atoms (e.g. C and H) are expected to stay at interstitial positions in BCC-iron than in FCC-iron

(100) face

25

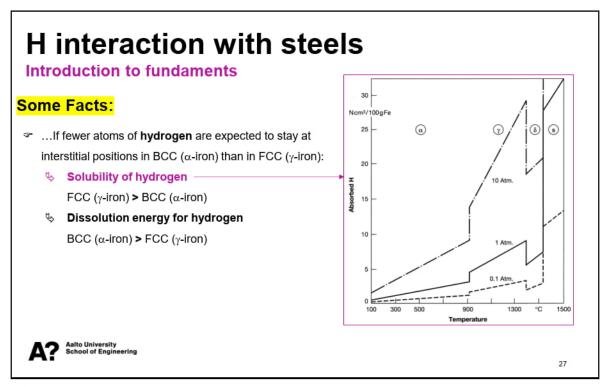
Generic atom (e.g. C) dissolved interstitially at

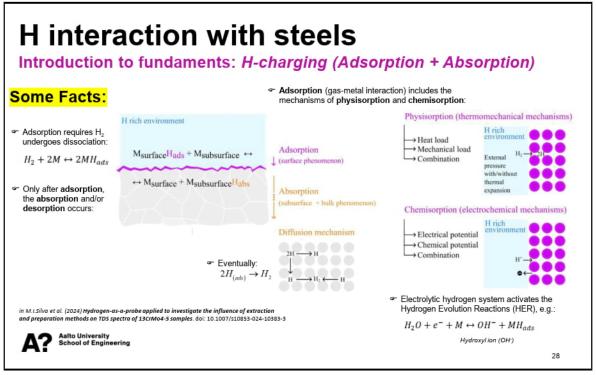
 $\frac{1}{2}$, 0, $\frac{1}{2}$ site in BCC

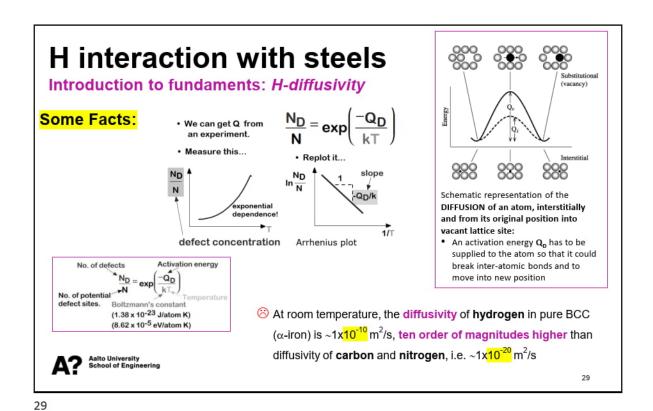
structure of α-Fe

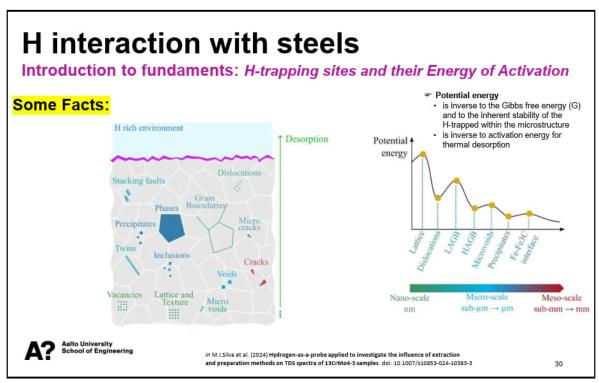
25

H interaction with steels


Introduction to fundaments: Typical hydrogen sources


Some Facts:


- Manufacturing of raw materials (e.g. metallurgical hydrogen content in a steel) and fabrication processes (e.g. welding)
- Hydrogenated gas mixtures in active chemical environments enhanced by electrical and/or mechanical energy (e.g. hydrogen sulfides H₂S -rich liquid flows in power plants)
- Storage (e.g. pressure vessels), transport (e.g. pipelines) and operation (e.g. components from combustion engines) of high-pressure and/or high-temperature hydrogen-rich gaseous environment
- Cathodic protection (e.g. in subsea pipelines)



26

H embrittlement (HE) effect on steels


Introduction to fundaments: Historical scope

Some Facts:

Working in the British steel industry at the **beginning of II Industrial Revolution**, the metallurgist **William Johnson** was the pioneer researcher investigating a mystery that affected the whole steel and wire drawing industry around **150** years ago (doi: 10.1002/adem.202400776)

W. H. Johnson (1875) On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Proc. Royal Society of London, 23, pp. 168-179. Extract from https://royaleocietypublishing.org

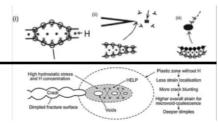
During WWII, 12 USA ships, incl. 3 Liberty, broke in half without warning:

- Cambridge Univ. demonstrated that fractures were due to low temperature embrittlement of steel. Welded hull construction, unlike riveted, allowed small cracks to propagate unimpeded
- Crack nucleated at square corner of a hatch which coincided with a welded seam, both corner and weld acting as stress concentrators. A revolution in NDT technology immerged from this historic event

31

31

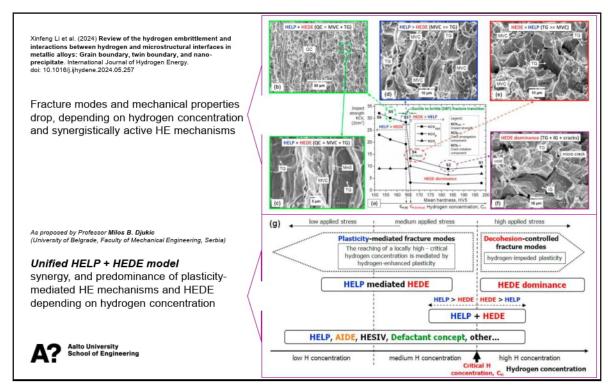
H embrittlement (HE) effect on steels


Introduction to fundaments: Typical Damage Mechanisms

Some Facts:

- Hydrogen Enhanced Decohesion (HEDE)
 - Embrittlement due to localized reduction in cohesive strength of the iron lattice hence assist the separation of cleavage planes or grain boundaries under a lower stress

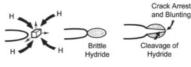
Atomic hydrogen accelerate the dislocation mobility through an elastic shielding effect that cause a local reduction in shear stress. Local high strains due to hydrogen clusters around dislocations, might disrupt interfaces and structures



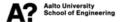
Schematic representation of Hydrogen Assisted Cracking (HAC) via HEDE and HELP

in Lynch, Stan (2012) Hydrogen embrittlement phenomena and mechanisms. Corrosion Reviews. 30 (3-4). doi: 10.1515/corrrev-2012-0502

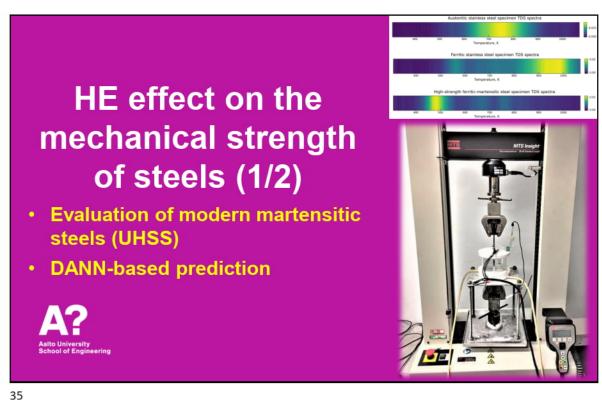
32

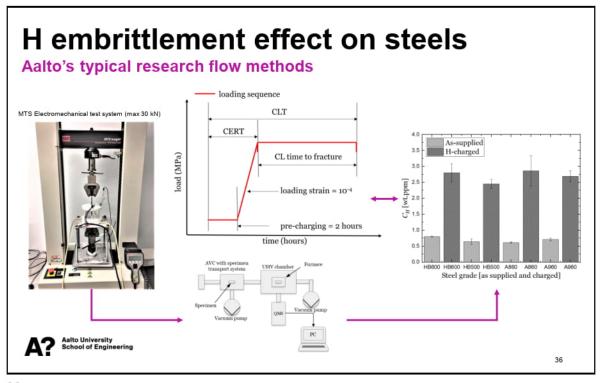


H embrittlement (HE) effect on steels

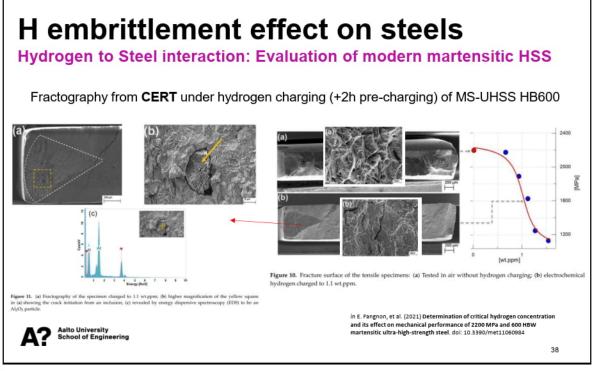

Introduction to fundaments: Other Damage Mechanisms

Some Facts:

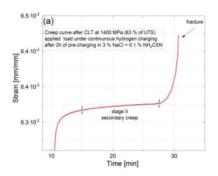

Hydrogen induced phase transformation (HIPT)



- Decohesive hydrogen fracture (DHF)
- 4 Hydrogen assisted microvoid / nanovoid coalescence (HDMC / NVC)
- Hydrogen enhanced strain-induced vacancies (HESIV)
- Hydrogen assisted microfracture (changed: ductile to brittle fracture mode) (HAM)
- Mixed fracture (MF)
- Adsorption-induced dislocation emission (AIDE)
- Hydrogen enhanced macroscopic (ductility) plasticity (HEMP)


34

H embrittlement effect on steels Hydrogen to Steel interaction: Evaluation of modern martensitic HSS CERT performed under continuous hydrogen charging (+2h pre-charging) of MS-UHSS HB600 Figure 5. (a) Engineering strain (embrit house) Figure 5. (a) Engineering strain (embrit house) Figure 5. (a) Engineering strain (embrit house) In E Fangnon, et al. (2021) Determination of critical hydrogen concentration and its effect on mechanical performance of 2200 MPa and 600 new martensitic Ultra-high-strength steel. doi: 10.3390/met11000984


37

H embrittlement effect on steels

Hydrogen to Steel interaction: Evaluation of modern martensitic HSS

CLT under hydrogen charging (+2h pre-charging) of MS-UHSS HB600

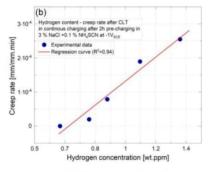
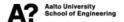
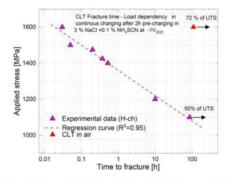
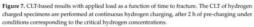



Figure 8. (a) Engineering strain versus time curve from CLT at 1400 MPa under continuous hydrogen charging; (b) creep rates as a function of hydrogen concentration.

in E. Fangnon, et al. (2021) Determination of critical hydrogen concentration and its effect on mechanical performance of 2200 MPa and 600 HBW martensitic ultra-high-strength steel. doi: 10.3390/met11060984


39


39

H embrittlement effect on steels

Hydrogen to Steel interaction: Evaluation of modern martensitic HSS

CLT under hydrogen charging (+2h pre-charging) of MS-UHSS HB600

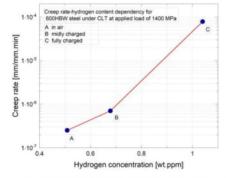
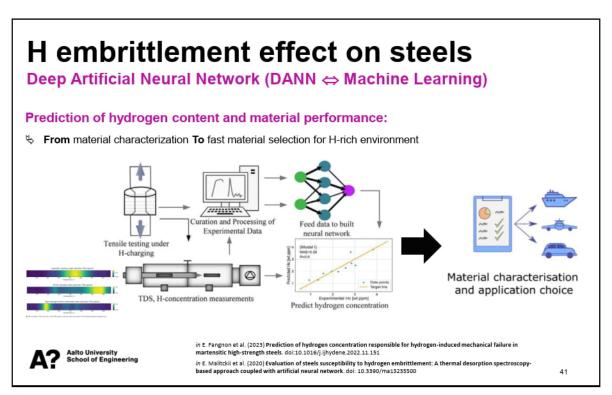
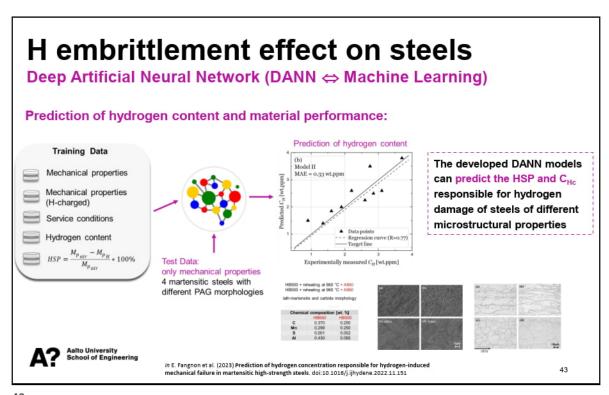
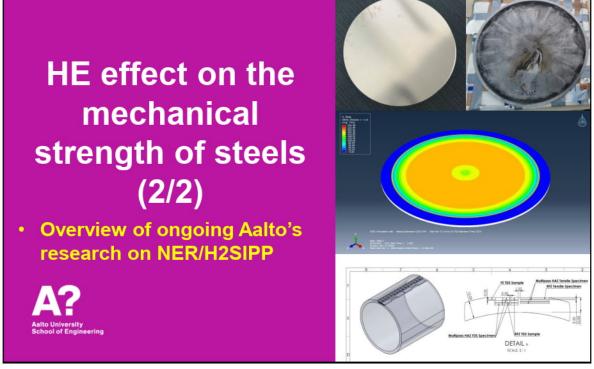



Figure 12. Creep rates in CLT under applied stress of 1400 MPa as a function of measured hydrogen concentration.




in E. Fangnon, et al. (2021) Determination of critical hydrogen concentration and its effect on mechanical performance of 2200 MPa and 600 HBW martensitic ultra-high-strength steel. doi: 10.3390/met11060984

40

NORDIC HYDROGEN VALLEYS

45

Pathways to 2030 and 2040

We will develop strategies to delimit key barriers identified in recent work for the implementation of hydrogen in the Nordic countries:

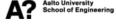
- Permit processes and social acceptance
- Knowledge transference to society and stakeholders with risk analysis
- 3) Key-safety features:
 - Materials safety
 - Safety distances

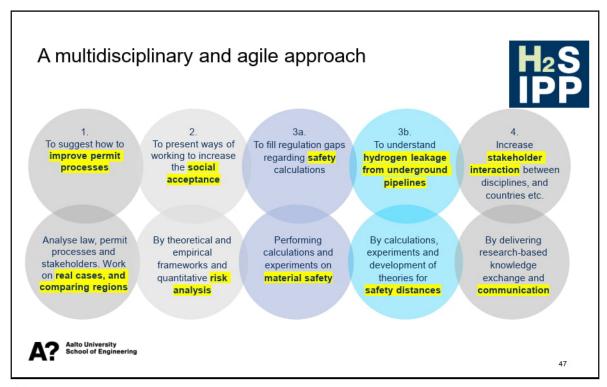
45

Frontrunners within the hydrogen industry, local hydrogen energy systems, pipelines, refuelling stations, NGOs and public partners

N^ORDION ENERGI

GÄLLIVARE-


SSAB



46

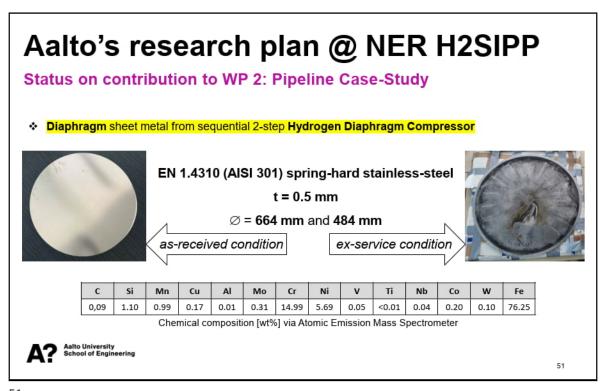
Aalto's research plan @ NER H2SIPP

"Hydrogen PIPELINE material selection and integrity control with CASE-STUDY"

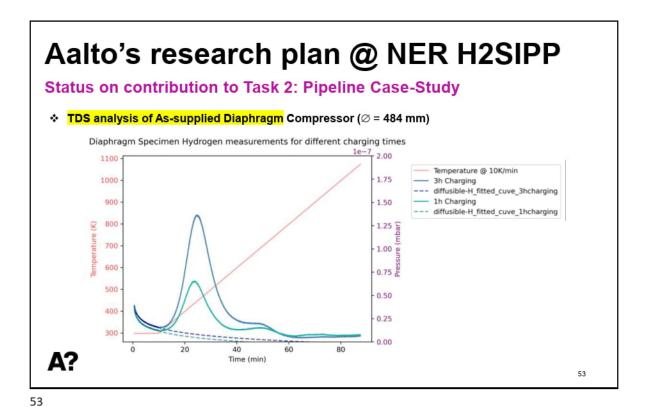
Aalto tasks	Hydrogen PIPELINE materials selection and integrity control with CASE-STUDY
Task 1	MATERIAL SELECTION: Selection and characterization of conventional and advanced materials for hydrogen pipeline
Task 2	MATERIAL CHARACTERIZATION: Characterization of hydrogen permeation and desorption via TDS
Task 3	MATERIAL SAFETY: Influence of hydrogen charging in material strength properties
Task 4	NDT PLAN: Laboratorial demo with definition of NDT plan
Task 5	INTEGRATION: Contribution to solutions and processes on knowledge gaps

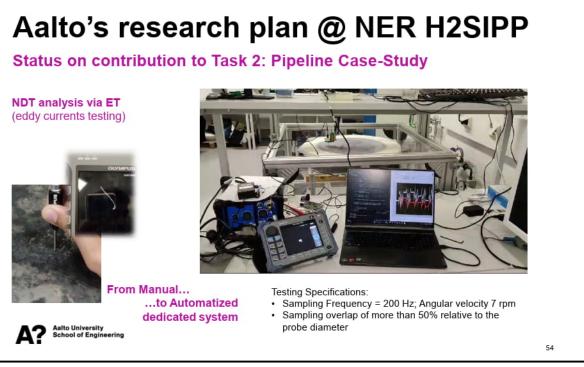
49

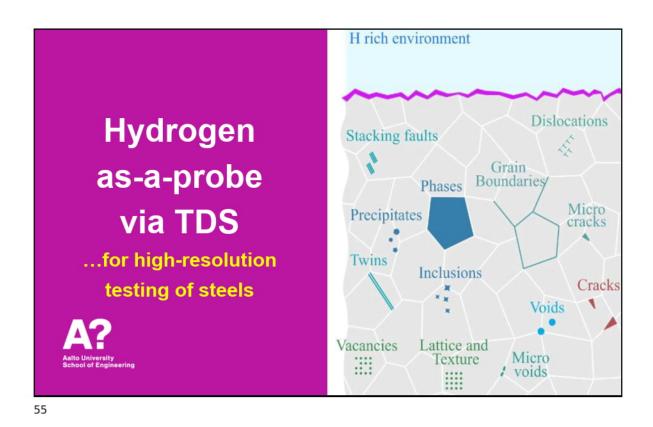
49

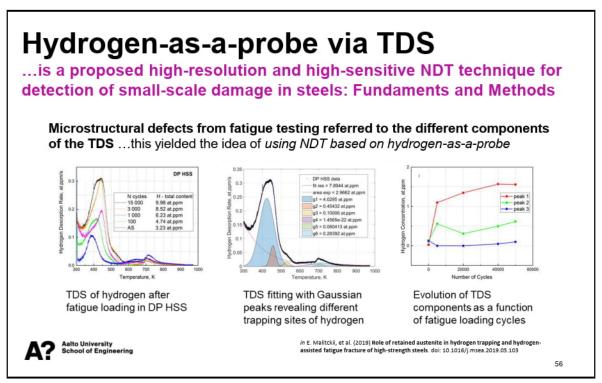

Aalto's research plan @ NER H2SIPP

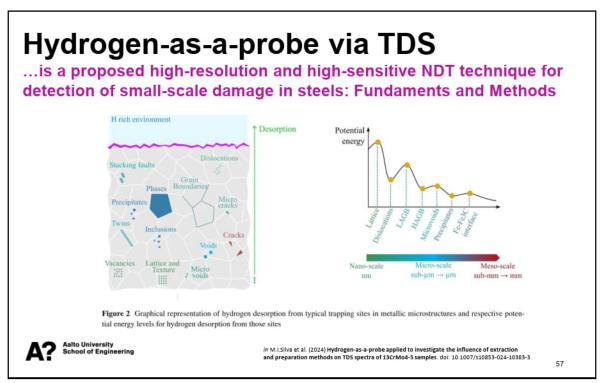
Status on contribution to WP 2: Pipeline Case-Study

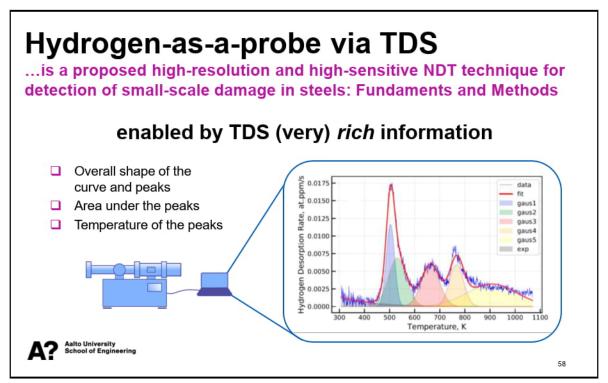

- Diaphragm sheet metal from sequential
 2 step Hydrogen Diaphragm Compressor system:
 - with ≈12 000 h accumulated operation (operation-campaigns of up to three weeks, and longer)
 - under 30 to 130 bar of up to 66 vol% of H2 (in stand-by since 2016)

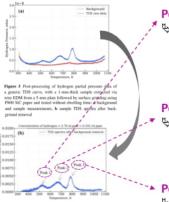



50









Hydrogen-as-a-probe via TDS

Summary of TDS peaks for 13CrMo4-5 (1Cr-0.5Mo) steel

Peak 1 (≈ 540 K @ 10 K/min) E_{activation}= 51 kJ/mol

is associated with low binding energy hydrogen traps with higher intensity NtS, and grows with:

- · Number of dislocations (GND low),
- · Presence of texture effects
- Number of grain boundaries

Peak 2 (\approx 668 K @ 10 K/min) $E_{activation}$ = 79 kJ/mol

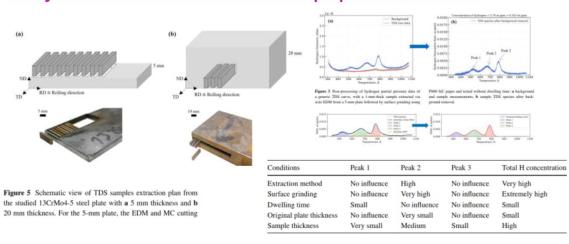
🤟 is associated with strong energy hydrogen traps mechanisms, and grows with:

- Density of NMI's, with H at their interface
- Content of LAGB, of the slightly larger and softer grain at the middle area of the plate

Peak 3 (≈ 800 K @ 10 K/min) E_{activation} = 127 kJ/mol

is associated with:

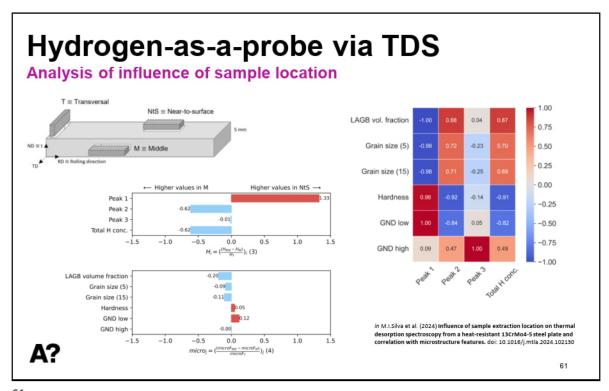
· Carbide precipitation phenomena (e.g. Cr and Mo-rich carbides)

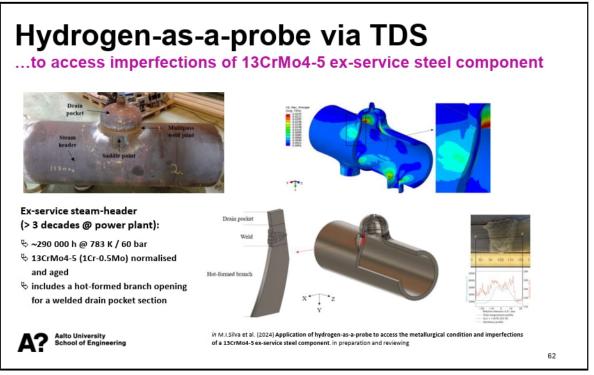


59

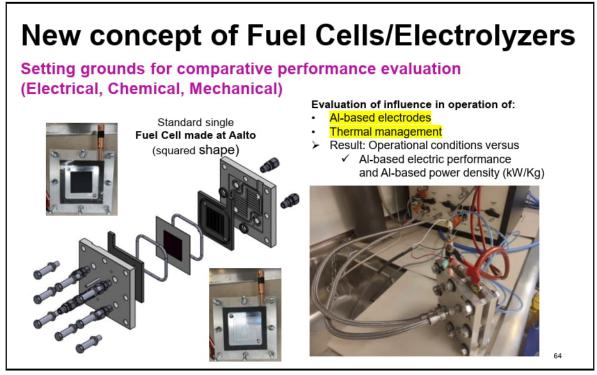
59

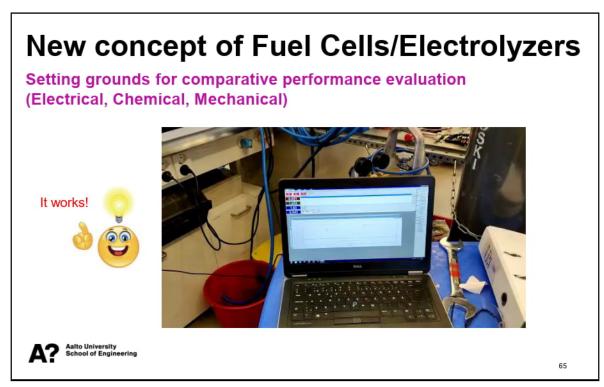
Hydrogen-as-a-probe via TDS

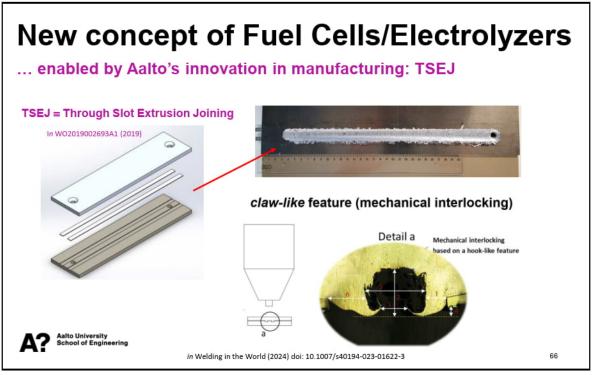

Analysis of influence of extraction and preparation methods



Aalto University
School of Engineering

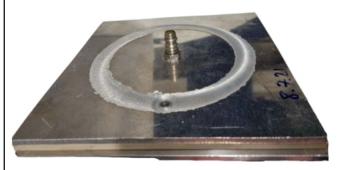

in M.I.Silva et al. (2024) Hydrogen-as-a-probe applied to investigate the influence of extraction and preparation methods on TDS spectra of 13CrMo4-5 samples. doi: 10.1007/s10853-024-10383-3


60



New concept of Fuel Cells/Electrolyzers

... enabled by Aalto's innovation in manufacturing: TSEJ

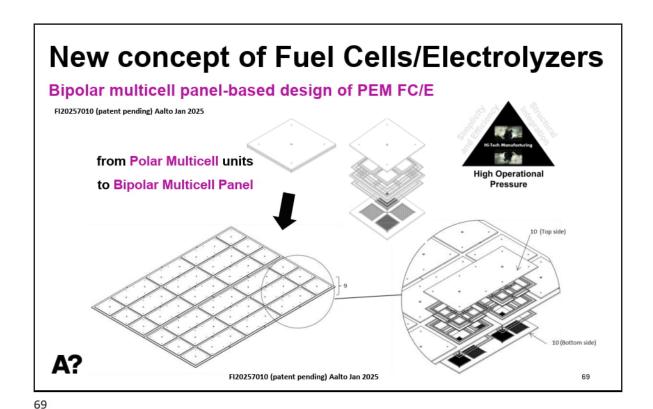


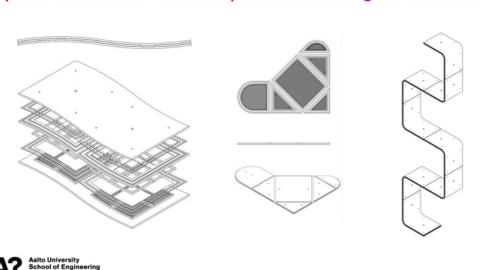
67

67

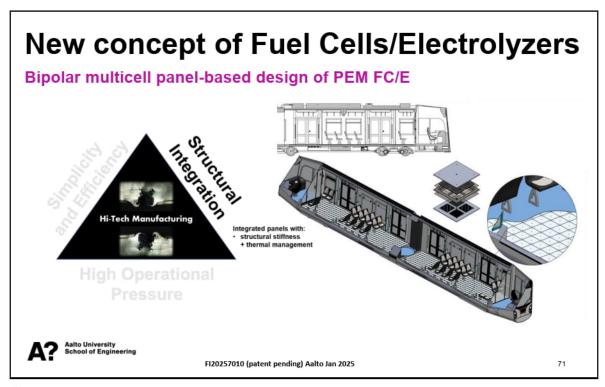
New concept of Fuel Cells/Electrolyzers

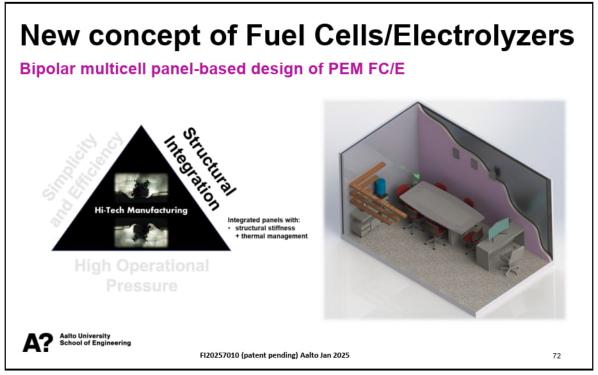
... enabled by Aalto's innovation in manufacturing: TSEJ




A2 Aalto University School of Engineering

68




New concept of Fuel Cells/Electrolyzers

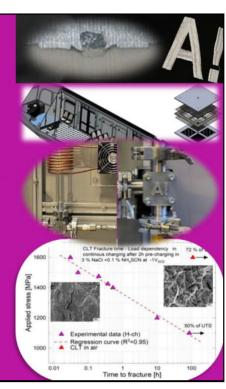
Bipolar multicell FREE-SHAPE panel-based design of PEM FC/E

FI20257010 (patent pending) Aalto Jan 2025 70

Final Remarks

at Aalto's, with

Materials Safety Analysis and


Advanced Manufacturing Technology

we aim at shaping the

Hydrogen Technology

in the world

73

aalto.fi

Department of Energy and Mechanical Engineering Materials and Manufacturing to Products (M2P) Research Group