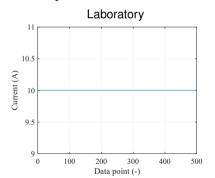
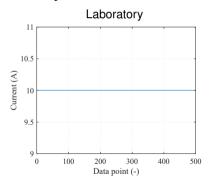


LAND OF THE CURIOUS

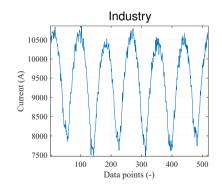

Linearization of alkaline electrolyzer current-voltage behavior under dynamic operation

Lauri Järvinen LUT University

Why is this relevant?


02.10.2024

3 / 13


Lauri Järvinen

Why is this relevant?

→ Industrial scale

3 / 13

Lauri Järvinen 02.10.2024

Hydrogen production

Hydrogen production is determined by the DC current

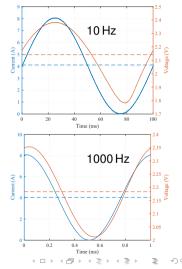
$$\dot{n}_{\mathsf{H}_2} = \eta_{\mathsf{F}} rac{j\mathsf{A}}{n_{\mathsf{e}} F},$$

 η_{F} : Faraday efficiency i: Current density A: Cell area

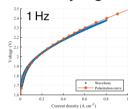
n_e: Transferred electrons F: Faraday constant

- Only direct current produces hydrogen
- ▶ AC current components transform to losses when supplied through the resistive electrolyzer load

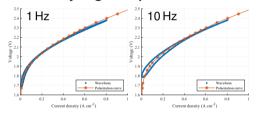
Linearization of the electrolyzer behavior


5/13

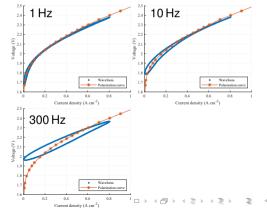
Lauri Järvinen 02.10.2024


Ripple measurements

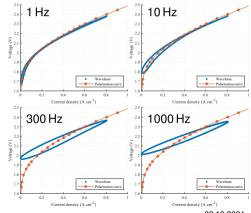
- ► Supply ripple to the electrolyzer cell
 - Sine waveform
 - ▶ 0-100% ripple amplitude
 - ▶ 0-1000 Hz ripple frequency
- Power analyzer used to measure current and voltage waveforms

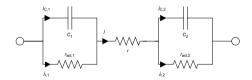


▶ At low frequencies system mostly follows polarization curve as expected


- At low frequencies system mostly follows polarization curve as expected
- As frequency increases the waveform starts to linearize

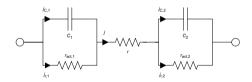
Lauri Järvinen

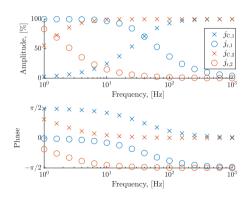

- At low frequencies system mostly follows polarization curve as expected
- As frequency increases the waveform starts to linearize
- ▶ System mostly linear at 300 Hz


Lauri Järvinen 02.10.2024 7 / 13

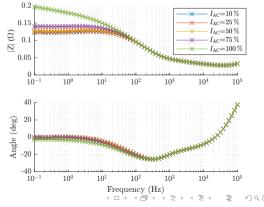
- At low frequencies system mostly follows polarization curve as expected
- As frequency increases the waveform starts to linearize
- ▶ System mostly linear at 300 Hz

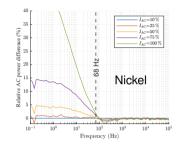
Why the linearization happens


- Cell capacitances at the electrodes provide low impedance path for high frequency AC currents
- Amplitude of the AC current through the activation is reduced


8 / 13

Why the linearization happens


- Cell capacitances at the electrodes provide low impedance path for high frequency AC currents
- Amplitude of the AC current through the activation is reduced


Defining the linearization frequency

- Nonlinear electrochemical impedance spectroscopy
 - ► Measurements done with a potentiostat
- ► Ripple amplitudes between 10-100% were used
- Convergence of the measurements indicates linearization

Finding the frequency limit for linearization

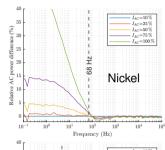
- Two electrode sets tested
 - Nickel foam
 - Advanced materials (DTU)
- System considered linear when relative AC power difference < 2% between all measurements

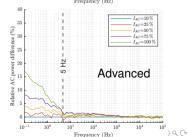
$$|Z_I| = rac{U_I}{I_I}$$
 $|Z_I| = rac{|Z_I| I_I^2}{2} \cos heta$

 $\theta_I = \phi_{III} - \phi_{III}$

Z: Impedance
I: Current

U: Voltageθ: Phase




Finding the frequency limit for linearization

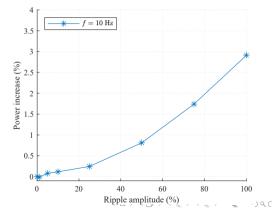
- Two electrode sets tested
 - Nickel foam
 - Advanced materials (DTU)
- System considered linear when relative AC power difference < 2% between all measurements
- Advanced electrodes have higher surface area
 - → higher capacitance
 - → Lower linearization frequency

Equations for Frequency component
$$I$$
:
$$|Z_I| = \frac{U_I}{I_I} \qquad \qquad P_{\text{AC},I} = \frac{|Z_I|I_I^2}{2}\cos\theta_I$$

$$\theta_I = \phi_{u,I} - \phi_{i,I} \qquad \qquad \theta_{I} = \theta_{u,I} - \phi_{i,I} \qquad \qquad \theta_{I} = \theta_{I} = \theta_{I}$$
Z: Impedance θ_{I} : Ourrent θ_{I} : Phase

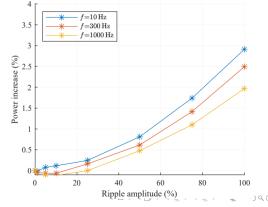
Lauri Järvinen

Performance impacts of the dynamic operation



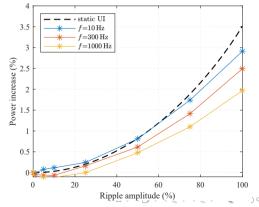
11 / 13

Additional power consumption


▶ Ripple amplitude increases the losses

Additional power consumption

- Ripple amplitude increases the losses
- Ripple frequency counteracts the losses



Lauri Järvinen

Additional power consumption

- Ripple amplitude increases the losses
- Ripple frequency counteracts the losses
- As frequency is reduced losses approach the case where ripple follows the static UI curve
- Ripple following the static UI curve should present the maximum loss

Thank you

13 / 13

Lauri Järvinen 02.10.2024