Computational perspectives to hydrogen combustion using open-source code

Physics/chemistry views

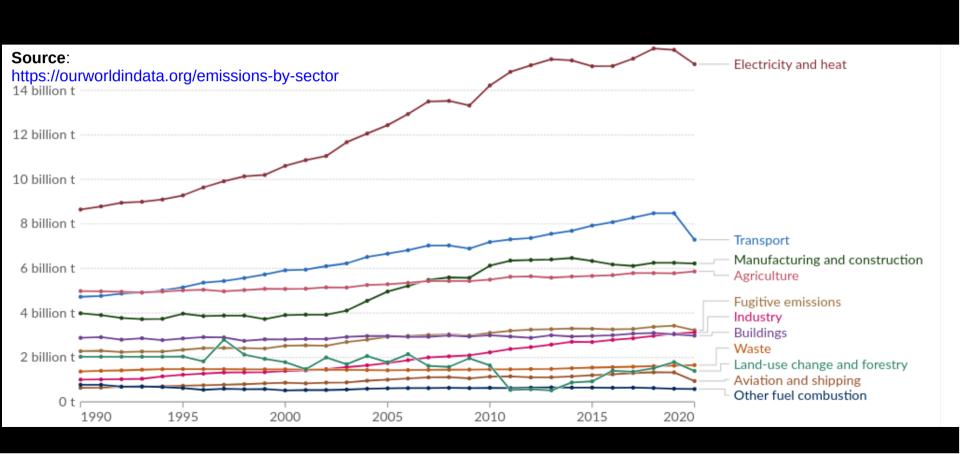
Hydrogen Breakfast Seminar 4, Wednesday, May 29th 2024 Otaniemi, Espoo

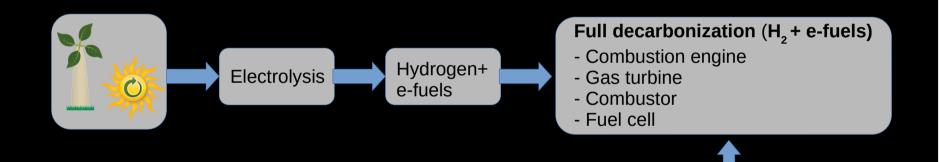
Associate Prof. Ville Vuorinen ville.vuorinen@aalto.fi

Fig: I. Morev

Contents of the talk

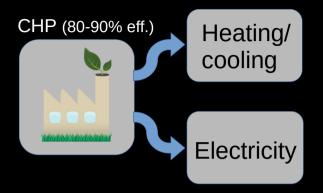
- 1) Motivation
- 2) Computational fluid dynamics at Aalto/ENG in 2024
- 3) Remarks about hydrogen
- 4) Aalto/ENG + international efforts to model hydrogen flames
- 5) Concluding remarks


1) Motivation



Green house gas emissions by sector

Measured in terms of CO2-equivalents over 100 year span


Extreme vision: there would be a great potential to even full decarbonization i.e. replacement of fossil fuels with hydrogen + e-fuels

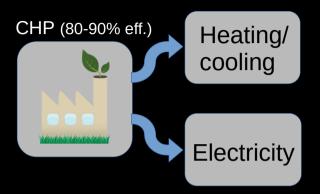
High demand to re-design energy conversion devices for H₂

Example: combined heat and power (CHP) plants

Combustion device (e.g. engine)

CFD direct numerical simulation of reactive flow in gas engine cylinder by HPC (high-performance comp.)

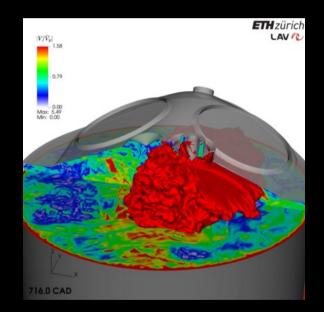
Credit: George Giannakopoulos


$$\vec{U} = \vec{U}(x, y, z, t)$$

$$T = T(x, y, z, t)$$

$$\rho = \rho(x, y, z, t)$$

$$p = \rho RT$$


Example: combined heat and power (CHP) plants

Combustion device (e.g. engine)

CFD direct numerical simulation of reactive flow in gas engine cylinder by HPC (high-performance comp.)

Credit: George Giannakopoulos

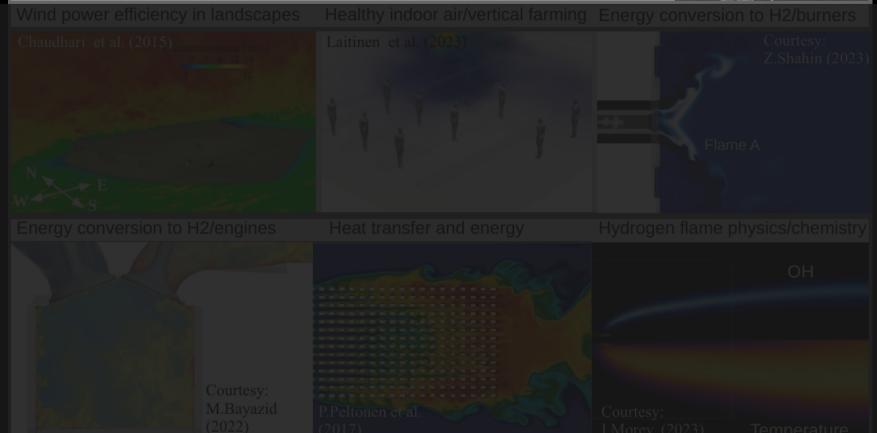
$$\vec{U} = \vec{U}(x, y, z, t)$$

$$\rho = \rho(x, y, z, t)$$

$$p = \rho RT$$

HPC + CFD caveats

- → CFD is computationally quite heavy
- → Requires HPC i.e. either a cluster or a supercomputer
- → CFD requires highly educated/experienced users
- → CFD of reactive flows extremely heavy
- → CFD of reactive flows highly multidisciplinary: engineering + physics + chemistry + software + HPC + data management



2) Computational fluid dynamics at Aalto/ENG

Computational fluid dynamics team at Aalto University/ENG, Finland - Prof. V. Vuorinen + Prof. O. Kaario + 20 researchers

- 15 supervised PhD's, 100+ journal papers
- Hydrogen, e-fuels, reactive multiphase flow, heat transfer, gas-/hydrodynamics
- OpenFOAM, StarCCM+, STAR-CD, LES/DNS/RANS/DES, DLBFoam

Computational fluid dynamics team at Aalto University/ENG, Finland - Prof. V. Vuorinen + Prof. O. Kaario + 20 researchers - 15 supervised PhD's, 100+ journal papers - Hydrogen, e-fuels, reactive multiphase flow, heat transfer, gas-/hydrodynamics - OpenFOAM, StarCCM+, STAR-CD, LES/DNS/RANS/DES, DLBFoam Healthy indoor air/vertical farming Energy conversion to H2/burners Wind power efficiency in landscapes Chaudhari et al. (2015) instantaneous (m Laitinen et al. (2023) Courtesy: Z.Shahin (2023) Flame A Energy conversion to H2/engines Heat transfer and energy Hydrogen flame physics/chemistry OH Courtesy: M.Bayazid Courtesy: P.Peltonen et al (2022)(2017)I.Morev, (2023) Temperature

OpenFOAM: the world's largest open-source code for computational fluid dynamics (CFD)

Governing equations in reactive flow CFD simulation

$$\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_i}{\partial x_i} = \overline{S}_{\rho}, \tag{}$$

Mass conservation (1 eqn)

$$\frac{\partial (\overline{\rho}\widetilde{u}_i)}{\partial t} + \frac{\partial (\overline{\rho}\widetilde{u}_i\widetilde{u}_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(-\overline{p}\delta_{ij} + \overline{\rho}\widetilde{u}_i\widetilde{u}_j - \overline{\rho}\widetilde{u}_i\widetilde{u}_j + \overline{\tau}_{ij} \right) + \overline{S}_{u,i},$$

Momentum conservation (3 eqs)

$$\frac{\partial \left(\overline{\rho}\widetilde{Y}_{k}\right)}{\partial t} + \frac{\partial \left(\overline{\rho}\widetilde{u}_{i}\widetilde{Y}_{k}\right)}{\partial x_{i}} = \frac{\partial}{\partial x_{i}} \left(\overline{\rho}\widetilde{u}_{i}\widetilde{Y}_{k} - \overline{\rho}\widetilde{u}_{i}\widetilde{Y}_{k} + \overline{\rho}\widetilde{D}\frac{\partial\widetilde{Y}_{k}}{\partial x_{i}}\right) + \overline{S}_{Y_{k}} + \overline{\dot{\omega}}_{k},$$
(3)

Species conservation (~10-30 eqs for H_2)

$$\begin{split} \frac{\partial \left(\overline{\rho}\widetilde{h}_{t}\right)}{\partial t} + \frac{\partial \left(\overline{\rho}\widetilde{u}_{j}\widetilde{h}_{t}\right)}{\partial x_{j}} &= \frac{\partial \overline{p}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\overline{\rho}\widetilde{u}_{j}\widetilde{h}_{s} - \overline{\rho}\widetilde{u_{j}}\widetilde{h}_{s} + \frac{\overline{\lambda}}{\overline{c}_{p}}\frac{\partial \widetilde{h}_{s}}{\partial x_{j}}\right) \\ &+ \overline{S}_{h} + \overline{\dot{\omega}}_{h}, \end{split} \quad \begin{array}{c} \text{Reactions } \sim N^{2} \\ \rightarrow \text{ bottle-neck} \end{split}$$

Energy conservation (~1 eqn)

The world's 3rd most powerful supercomputer: CSC's LUMI in Kajaani

DLBFoam: open-source code to radically accelerating the chemistry bottle-neck in OpenFOAM CFD simulations

Solution: We developed DLBFoam: finite rate chemistry code with Dynamic Load Balancing in order to accelerate the chemistry. Utilizes analytical Jacobian evaluation via pyJac.

Physics of Fluids

pyJac: https://slackha.github.io/pyJac/

DLBFoam: https://github.com/Aalto-CFD/DLBFoam

Contents lists available at ScienceDirect

Computer Physics Communications

Computer Physics Communications

www.elsevier.com/locate/cpc

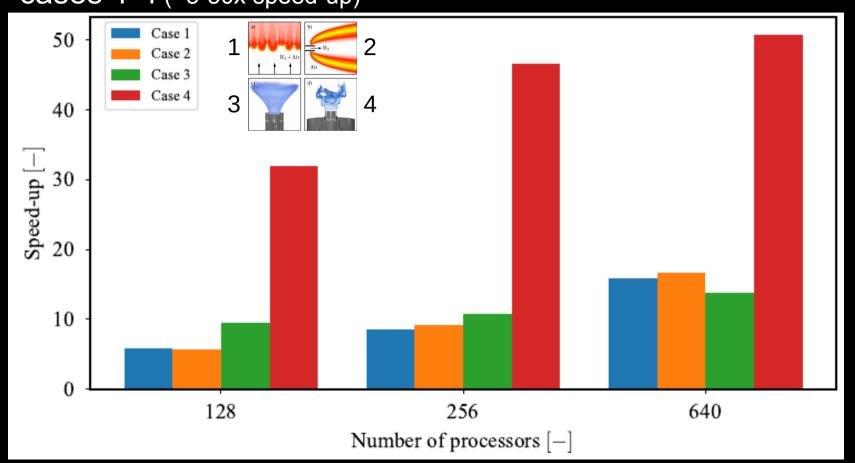
DLBFoam: An open-source dynamic load balancing model for fast reacting flow simulations in OpenFOAM **,***

Bulut Tekgül a,*, Petteri Peltonen a, Heikki Kahila b, Ossi Kaario a, Ville Vuorinen a

^a Department of Mechanical Engineering, Aalto University School of Engineering, Otakaari 4, 02150 Espoo, Finland

^b Wärtsilä Finland Oy, 65101 Vaasa, Finland

scitation.org/journal/phf


Examples on recent publications where DLBFoam is used

- [1] M.Gadalla, S.Karimkashi, I.Kabil, O.Kaario, T.Lu and V.Vuorinen, Embedded direct numerical simulation of ignition kernel evolution and flame initiation in dual-fuel spray assisted combustion, Combustion and Flame, 259, 113172, (2024).
- [2] S.Karimkashi, M.Gadalla, J.Kannan, B.Tekgul, O.Kaario, and V.Vuorinen, Large-eddy simulation of diesel pilot spray ignition in lean methane-air and methanol-air mixtures at different ambient temperatures, International Journal of Engine Research, 24, 3, (2023).
- [3] A.Shahanaghi, S.Karimkashi, O.Kaario and V.Vuorinen, Efficient two-dimensional simulation of primary reference fuel ignition under engine-relevant thermal stratification, Physics of Fluids, 35, 126102, (2023).
- [4] P.Tamadonfar, S.Karimkashi, O.Kaario and V.Vuorinen, A Numerical Study on Premixed Turbulent Planar Ammonia/Air and Ammonia/Hydrogen/Air Flames: An Analysis on Flame Displacement Speed and Burning Velocity, Flow, Turbulence and Combustion, 111, 717–741, (2023).
- [5] S.Karimkashi, M.Gadalla, J.Kannan, B.Tekgul, O.Kaario, and V.Vuorinen, Large-eddy simulation of diesel pilot spray ignition in lean methane-air and methanol-air mixtures at different ambient temperatures
- [6] B.Tekgul, P.Peltonen, H.Kahila, O.Kaario and V.Vuorinen, DLBFoam: An open-source dynamic load balancing model for fast reacting flow simulations in OpenFOAM, Computer Physics Communications, 267, 108073 (2021).
- [7] M.Gadalla, J.Kannan, B.Tekgul, S.Karimkashi, O.Kaario and V.Vuorinen, Large-eddy simulation of tri-fuel combustion Diesel spray assisted ignition of methanol-hydrogen blends, International Journal of Hydrogen Research, 46, 41, (2021).
- [8] J.Kannan, M.Gadalla, O.Kaario, S.Karimkashi, B.Tekgul and V.Vuorinen, Large-eddy simulation of tri-fuel ignition diesel spray-assisted ignition of lean hydrogen—methane—air mixtures, Combustion Theory and Modelling, 25, 3, (2021).
- [9] B.Tekgul, S.Karimkashi, H.Kahila, Z.Ahmad, J.Hyvönen, E.Lendormy, O.Kaario and V.Vuorinen, Large-eddy simulation of spray assisted dual-fuel ignition under reactivity-controlled dynamic conditions, FUEL, 293, 120295, (2021).
- [10] B. Tekgul, V. Vuorinen et al. Large-eddy simulation of dual-fuel spray ignition at different ambient temperatures, Combustion and Flame, 215, (2020).
- [11] S.Karimkashi, H.Kahila, O.Kaario, M.Larmi, and V.Vuorinen, A numerical study on combustion mode characterization for locally stratified dual-fuel mixtures, Combustion and Flame, 214, (2020).
- [12] H.Kahila, Z.Ahmad, O.Kaario, M.Ghaderi-Masouleh, M.Larmi, and V.Vuorinen, Large-eddy simulation of dual-fuel ignition: Diesel spray injection into a lean methane-air mixture, Combustion and Flame, 191, 142-159, (2019).

DLBFoam: computational speed-up for H₂ for 4 different flame

cases 1-4 (~5-50x speed-up)

3) Remarks about hydrogen

Oversimplification:

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$

"Hydrogen + Oxygen → Water"

Hydrogen combustion is complex and also produces nitric oxide emissions

E.g. Westbrook et al. (2004)

→ 19 chemical reactions

→ 11 molecule species

O'Connaire, M., H. J. Curran, J. M. Simmie, W. J. Pitz, and

C. K. Westbrook,
"A Comprehensive Modeling Study of Hydrogen Oxidation,"
Int. J. Chem. Kinet., 36:603-622, 2004 (UCRL-JC-152569).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	×2.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	×2.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	×2.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	×2.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	×2.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	×2.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Formation and Consumption of H_2O_2	
$14^{\text{h}} \mid \text{HO}_2 + \text{HO}_2 = \text{H}_2\text{O}_2 + \text{O}_2 4.2 \times 10^{14} \mid 0.00 \mid 11.98 \mid [47]$	
$ \dot{H}\dot{O}_2 + H\dot{O}_2 = H_2O_2 + O_2 $ $ 1.3 \times 10^{11} $ $ 0.00 $ $ -1.629 $ [47]	
$15^{i,f} \mid H_2O_2 + M = \dot{O}H + O\dot{H} + M \mid 1.27 \times 10^{17} \mid 0.00 \mid 45.5 \mid [48]$	
$H_2O_2 = \dot{O}H + O\dot{H}$	
16 $H_2O_2 + \dot{H} = H_2O + \dot{O}H$ 2.41 × 10 ¹³ 0.00 3.97 [43]	
	1.25
18 $H_2O_2 + \dot{O} = \dot{O}H + H\dot{O}_2$ 9.55×10^{06} 2.00 3.97 [43]	
$ 19^{h} H_{2}O_{2} + OH = H_{2}O + HO_{2} 1.0 \times 10^{12} 0.00 0.00 [50] $	
$H_2O_2 + \dot{O}H = H_2O + H\dot{O}_2$ 5.8 × 10 ¹⁴ 0.00 9.56 [50]	

H₂/O₂ Chain Reactions

Ref.

Reaction

Hydrogen is actually quite different from other fuels.

Not only diffusive/light but also very high flame speed.

Hydrogen (H₂) has very different combustion properties when compared to hydrocarbons e.g. methane (CH₄) or propane (C₃H₈)

Table 1 Thermal properties and fundamental combustion characteristics of ammonia and hydrocarbon fuels. Data of boiling point and condensation point are from NIST database [8].

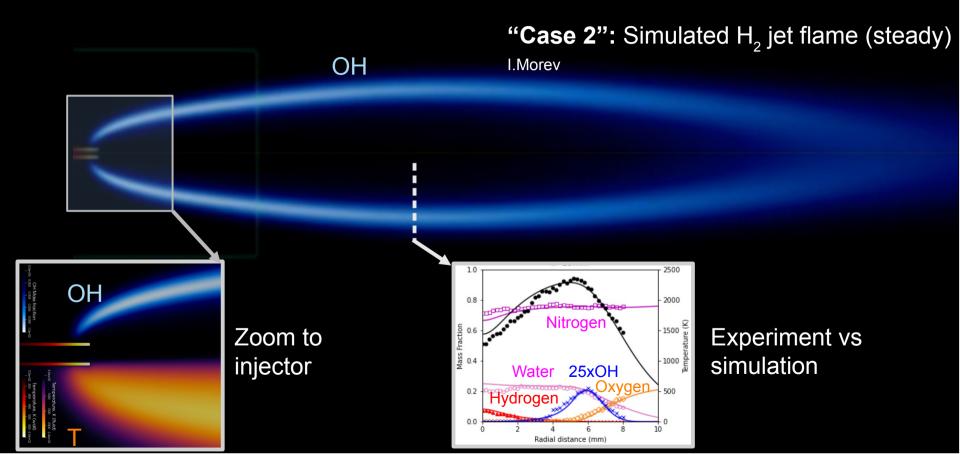
Fuel	NH_3	H_2	$\mathrm{CH_4}$	C_3H_8
Boiling temperatureat 1 atm (°C)	-33.4	-253	-161	-42.1
Condensation pressure at 25 °C (atm)	9.90	N/A	N/A	9.40
Lower heating value, LHV (MJ/kg)	18.6	120	50.0	46.4
Flammability limit (Equivalence ratio)	$0.63 \sim 1.40$	$0.10 \sim 7.1$	$0.50 \sim 1.7$	$0.51 \sim 2.5$
Adiabatic flame temperature (°C)	1800	2110	1950	2000
Maximum laminar burning velocity (m/s)	0.07	2.91	0.37	0.43
Minimum auto ignition temperature (°C)	650	520	630	450

Flame speed is very important concept affecting fluid dynamical design of combustion devices.

E.g. try to avoid "flashback" vs "blow-out"

Simulated premixed H₂ combustion/AHEAD burner

To be submitted

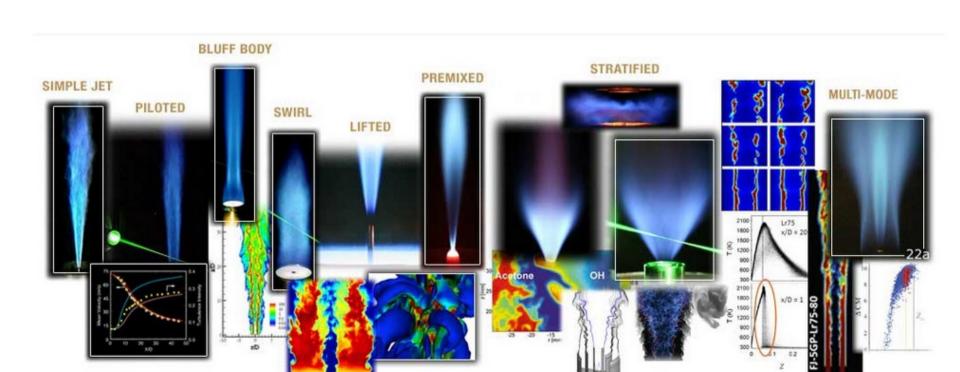

Courtesy: A.Haider/ Aalto

How do you know your simulation is correct?

 \rightarrow Compare 3D flame structure sim. vs exp.

4) Aalto/ENG + international efforts to model hydrogen flames

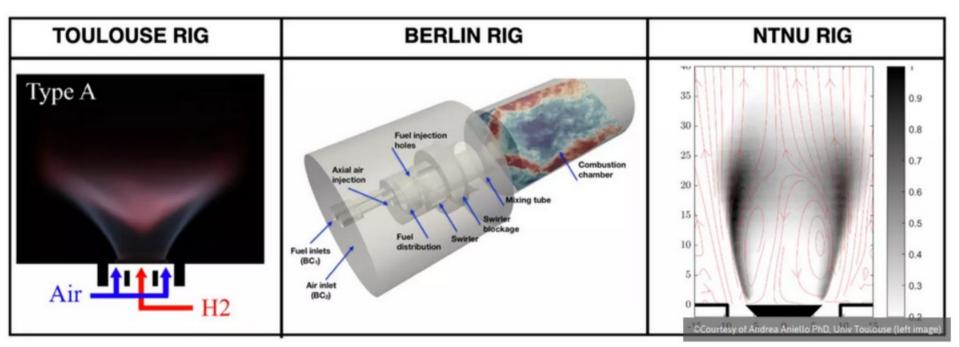
TNF Workshop

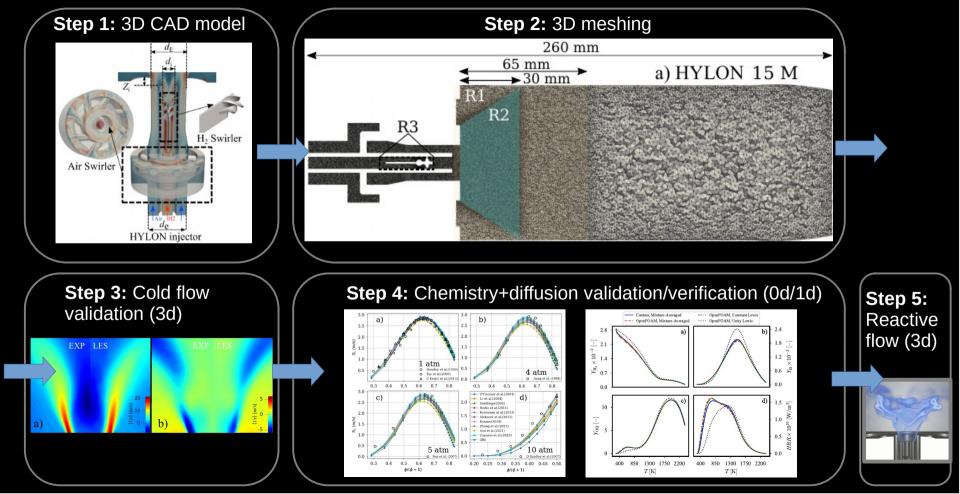

International Workshop on Measurement and Computation of Turbulent Flames

HOME

DATA ARCHIVES

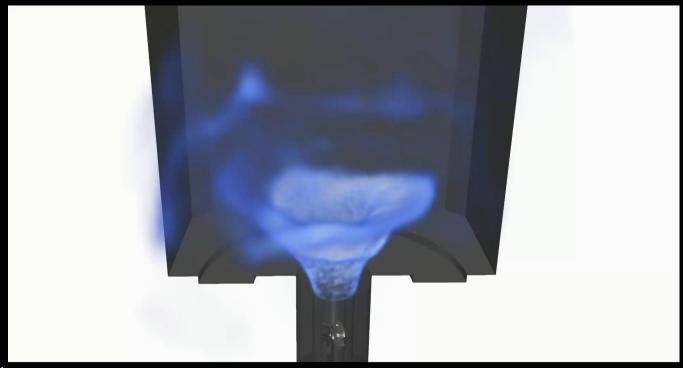
WORKSHOP PROCEEDINGS


CONTACT


May 2023: International initiative to compare different CFD codes against high quality experimental data on three hydrogen flame rigs

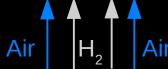
Clean Aviation working group on CFD codes for hydrogen-air combustion

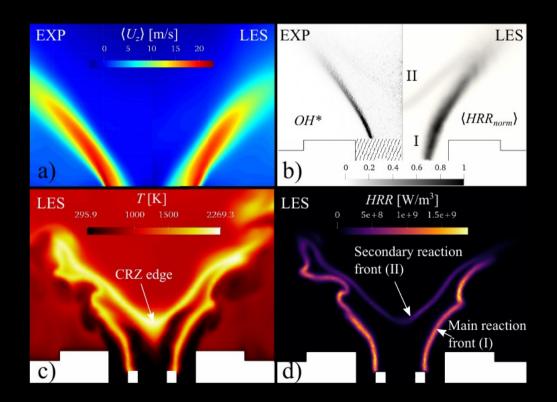
Experimental, high-precision data will be made available from **three experiments**: the **HYLON rig** in Toulouse, the **TU Berlin rig** in Berlin and the **NTNU rig** in Trondheim. Only pure hydrogen-air flames will be considered in the frame of this workshop.

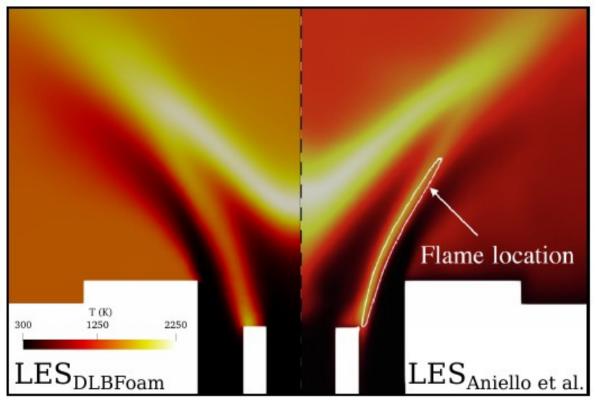


Computational modeling steps before H₂ flame CFD simulations

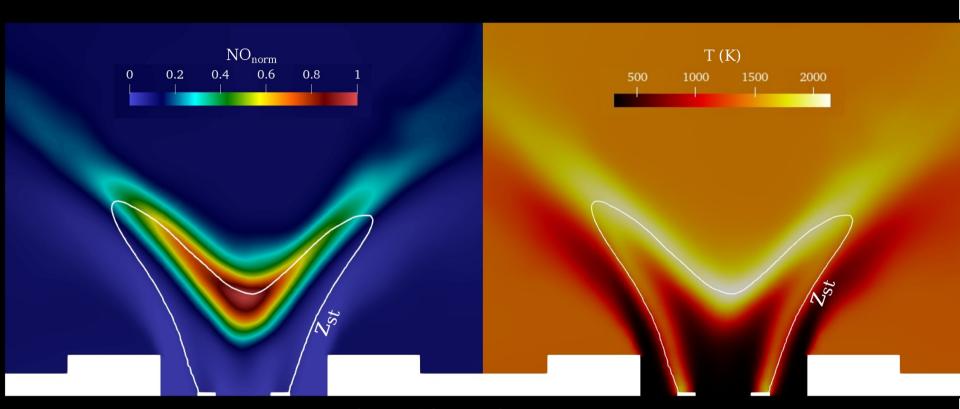
Large-eddy simulation of HYLON Flame A setup (TOULOUSE rig): non-premixed hydrogen combustion


Courtesy: Z.Shahin (M.Sc. thesis 2023)





HYLON Flame A: comparison of present simulation (LES/CFD) against experimental data



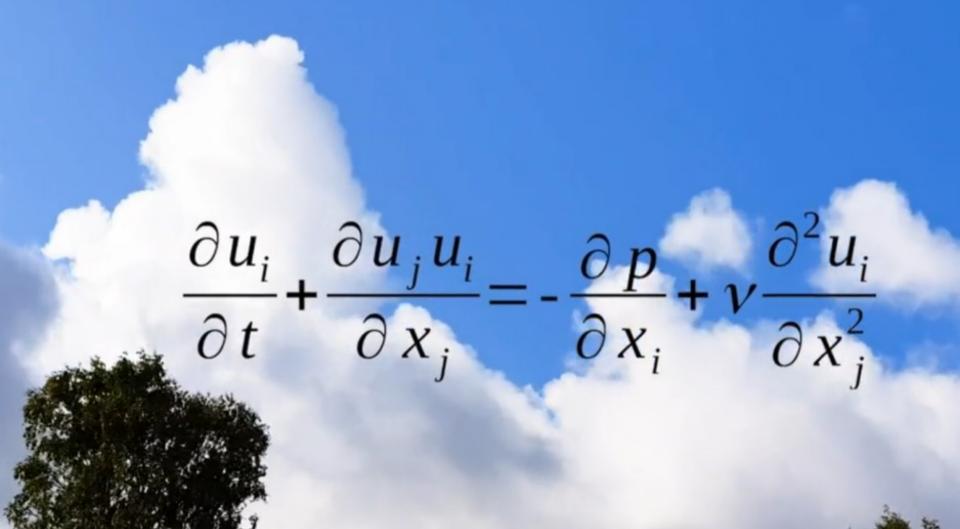
Courtesy: Z.Shahin (M.Sc. thesis 2023)

Figure 36: Contour map of the temperature observed from the current work a) and the LES values from [14]b) for the anchored flame A.

NOx emissions vs local temperature

Courtesy: Z.Shahin (M.Sc. thesis 2023)

5) Concluding remarks


Personal experiences from our team on solving very difficult computational problems

- 1) show that it is possible to solve a problem
- 2) do it more efficiently
- 3) make your code/setups open to everyone
- 4) trust on the power of community efforts e.g. "OpenFOAM"
- **5)** go back to 1)

→ This talk: open-source CFD (OpenFOAM+DLBFoam) R&D potential shown for complex H₂ combustion devices. "Simulation has become the third scientific pillar alongside theory and experiments" (Prof. C.Hasse/Nov. 6th 2023)

Aalto University

