

Dissertation press release

28.01.2021

Radio technologies for Internet of Things

Title of the dissertation Analysis and characterization of short-range and low-power radio technologies for Internet of Things: Protocol and Application
Lyhyen kantaman ja matalan tehonkulutuksen esineiden internet-radioteknologioiden analysointi ja karakterisointi: protokolla ja sovellus

Contents of the dissertation

Internet of Things (IoT) creates a network of physical objects realized with sensors, actuators, software and other technologies in order to exchange data over the Internet. IoT enables a networked society by providing new opportunities for industries, and a whole set of new service types (such as intelligent transportation, location-based services, asset tracking, smart monitoring, and management of objects). To enable this vision, various technologies are required to provide seamless connections among heterogeneous objects.

Short-range, low-power radio technologies, among others, are the main enablers of the IoT ecosystem. However, to fulfill this vision, many unresolved challenges including reliability, throughput, availability, end-to-end delay and battery lifetime remain to be addressed. To this end, this thesis is an attempt to shed light on some of these challenges related to short-range low-power radio technologies. We consider Wi-Fi, Bluetooth Low Energy and Backscatter Communication System for this thesis which are regarded as suitable technologies in the short-range and low-power radio domains.

Furthermore, we provide a comprehensive survey of time synchronization (as an important characterization in wireless sensor networks) for IoT deployment. This work aims at aiding IoT practitioners to select appropriate clock synchronization components, whose importance changes from application to application in IoT deployments. Finally, we introduce an end-to-end IoT application by using short-range radio technology. We developed a low-cost automated indoor localization and tracking system using Bluetooth. This application indicates the importance of short-range radio in realizing IoT applications and services.

Field of the dissertation Communications Engineering

Doctoral candidate Behnam Badihi, M.Sc. (Tech.), Born in Iran, 1981

Time of the defence 09.02.2021 time 12:00

Place of the defence Remote defense via Zoom: <https://aalto.zoom.us/j/62335230440>

Opponent Professor Carlo Fischione, Royal Technology of Institute (KTH), Sweden

Custos Professor Riku Jäntti, Aalto University School of Electrical Engineering, Department of Communications and Networking

Electronic dissertation <https://aaltodoc.aalto.fi/handle/123456789/101931>

Doctoral candidate's contact information Behnam Badihi, Aalto University, behnam.badihi@aalto.fi, +358 50 3104211