

Modelling of Energy Storage

Policy options for promoting distributed **solar PV + battery** Systems

Dr. Behnam Zakeri

Research Scholar. International Institute for Applied Systems Analysis, (IIASA), Austria

Visiting Lecturer: Sustainable Energy Planning, Aalborg University, Denmark

Aalto Energy Platform webinar 25 Nov 2020

Solar PV installations worldwide

One of the key technologies in renewable energy transitions worldwide

- Significant cost reduction of solar PV modules in recent years
- Cheapest generation mode in many countries
- Modular, visually accepted, not complex installation, no water needs, maintenance-free
- Other benefits of distributed generation, (grid independence, reliability, etc.)
- System level benefits in many countries (no cost of Transmission and distribution (T&D))

Global installed capacity of solar PV by country

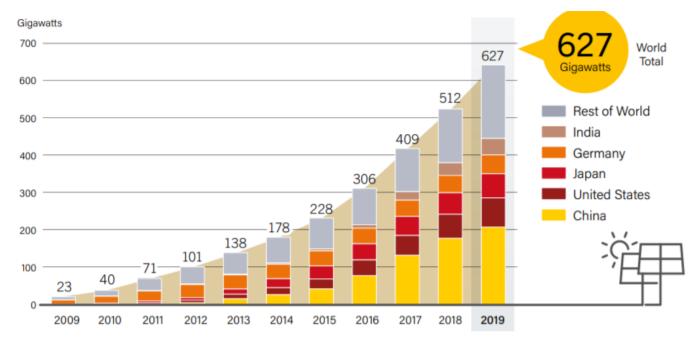


Chart: https://ren21.net

Solar PV in Europe

A diverse mix of policy support mechanisms

- Significant support, mostly feed-in-tariff in initial stages in different countries
- Continuous reduction of support as costs fall
- Receiving support in cold climate countries:

Denmark, UK, Sweden

Policy targets:

- Increasing self-consumption
- Export to the grid
- Recently: use of storage (battery) to increase the self-consumption

Capacity additions of solar PV in Europe (2010-2019)

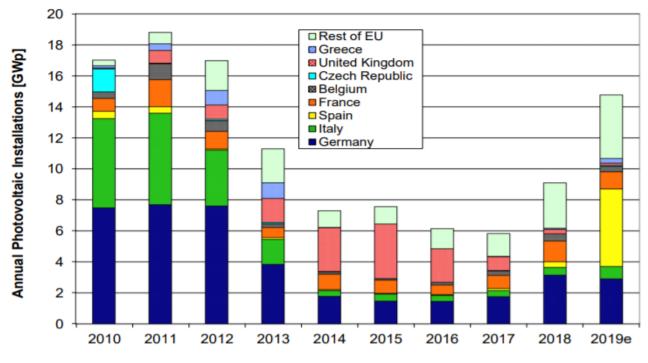
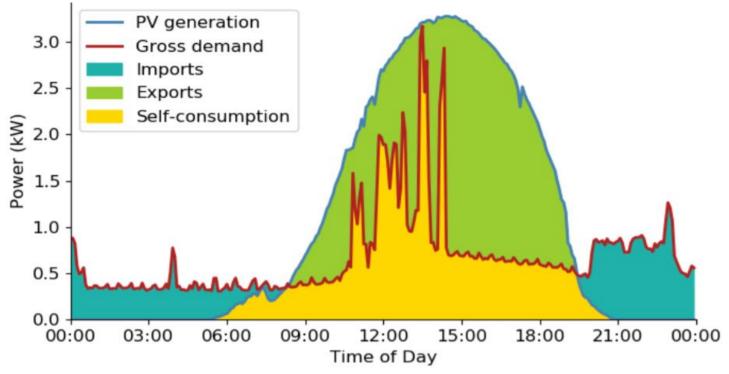


Chart: https://ec.europa.eu/jrc/sites/jrcsh/files/kjna29938enn_1.pdf

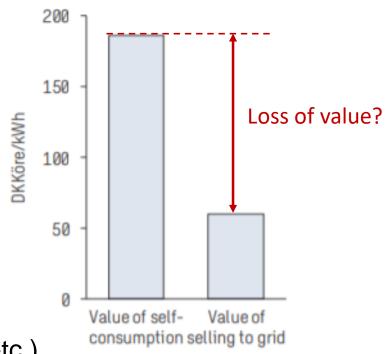

Solar PV self-Consumption

The amount of solar PV generation used onsite

- · Depends on several parameters, including load pattern and solar irradiation, size, occupancy, ...
- Self-consumption rate between 30-42% in UK

Daily self-consumption of residential solar PV (UK, summer)

Solar PV self-Consumption (2)


How to increase the value of solar PV?

- Significant portion of solar PV generation must be exported to the grid
- Grid fees and export prices typically have lower value than self-consumption

Options for increasing self-consumption:

- Power to heat (electric heating) → Finland (self-consumption
 42% and more): not suitable for low-heat-demand seasons
- Battery (electricity storage): focus of this analysis
- Electric charging (?) → Timing may not match (day-night)
- Sharing with the neighbors (?) (peer to peer, community pools, etc.)

Solar PV self-consumption vs. selling to grid in Denmark

Solar PV paired with battery energy storage

How to calculate the cost-benefits?

- Cash flow metrics are commonly used to evaluate the financial viability of energy investments, such as Internal rate of return (IRR), net present value (NPV), etc.
- Revenues and costs should be known over the lifetime of the investment

For solar PV + battery it means:

- Estimating electricity prices for 20-30 years
- Amount of incentives/subsidies for years to come
- Grid selling price and tariffs for years to come
- Number of cycles battery can deliver (replacement?)

And several other parameters →

Complex and uncertain to calculate profitability

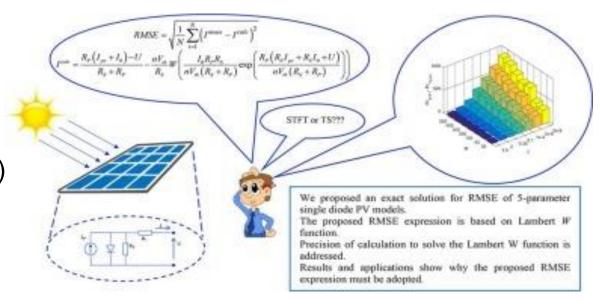
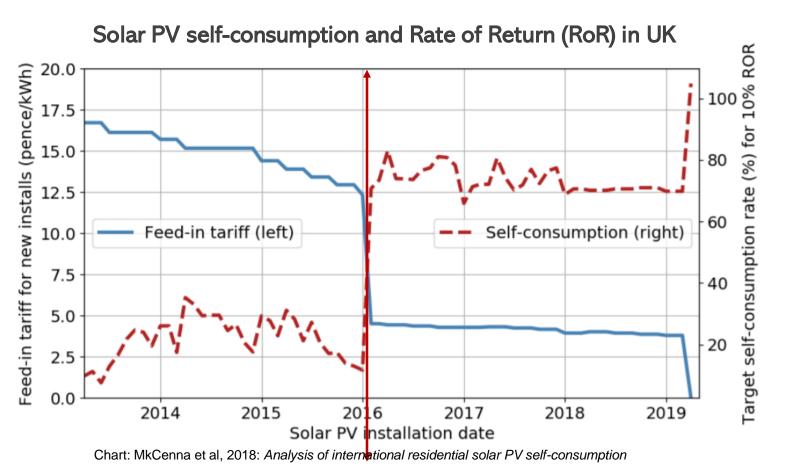


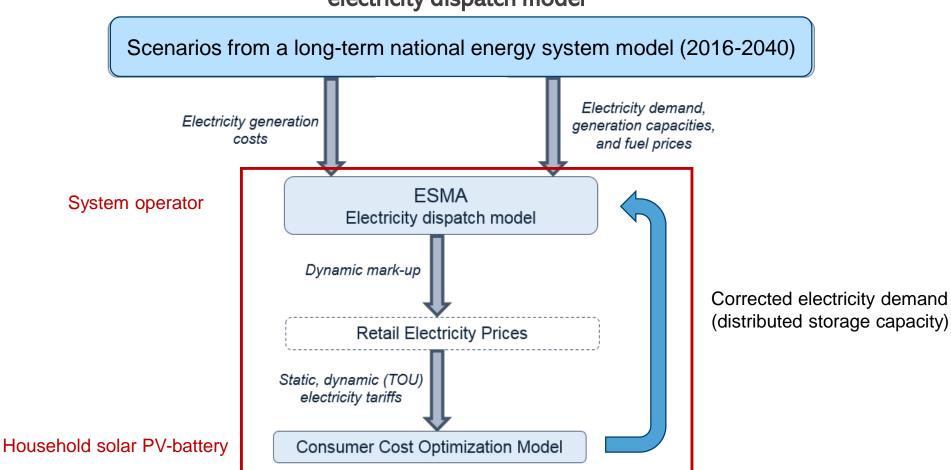
Image: Calasan et al. 2020


Solar PV + battery energy storage (2)

Feasibility studies: typically based on simplified assumptions

- Assuming fixed electricity prices and tariffs
- Assuming storage as a price taker technology

 Change of subsidy: the impact on the economics of distributed energy technology is significant



Modelling of solar PV + battery energy storage

An approach based on linking multiple models

Linking a consumer PV-battery model to a national-level electricity dispatch model

Modelling of solar PV + battery energy storage (2)

Evaluating consumer investments

- Considering a system-based NPV (SNPV)
- →SNPV internalizes the dynamics of electricity prices during the lifetime of investment
- Four future energy scenarios were examined
- 1. Green ambition: high renewables, high sustainability awareness
- 2. Consumer power: economics and energy security main drivers
- 3. Slow progression: reduced progression towards decarbonization
- 4. No progression: no significant changes
- Two electricity tariffs: static and time of use (ToU)
- Four technology options: no technology, PV-alone, battery-alone, and PV + battery

Results: consumer investments

Comparing system NPV (SNPV) of technology options for two scenarios

Considering electricity bills and technology costs (not subsidies)

PV with ToU tariffs offers highest benefits (yet needs £0.4-0.5k to become profitable)

- Battery-alone is the costliest option
- PV + battery increases self-consumption by 80%
 At an additional £2.6k–£3.9k (compared to PV-only)
- PV + battery is more beneficial in the scenario
 with higher RE in the system (Gone Green)
- PV + battery more beneficial with static tariffs

Compared to "No technology"

	Consumer technology	Future Energy Scenario				
Electricity tariff		No Progression		Gone Green		
		SNPV (£k)	$\Delta SNPV_P$ £) k)	SNPV (£k)	$\Delta SNPV_P$ £) k)	
Static tariff	No technology	-9.5	N/A	-8.8	N/A	
	battery-only	-16.2	-6.7	-15.0	-6.2	
	PV-only	-10.9	-1.4	-10.1	-1.3	
	PV+battery	-13.7	-4.2	-12.7	-3.9	
TOU tariff	No technology	-9.0	N/A	-8.4	N/A	
	battery-only	-12.8	-3.8	-11.9	-3.5	
	PV-only	-9.5	-0.5	-8.8	-0.4	
	PV+battery	-13.3	-4.3	-12.4	-4.0	

Results: policy options

Existing and new incentives

→ Without incentives, using battery for self-consumption is not economically feasible for consumers

Deficit of 3.9 – 4.4 (£k)

The policy options examined:

- Capital subsidy for pairing battery with PV
- 2. Eliminating incentives to export to the grid and adding a generation tariff (*enhanced tariff*)
- 3. Introducing a *storage tariff:*
- Payment for each kWh of electricity stored (and discharged)
- Reflects the value created by the battery relative to an investment in solar PV alone
- A function of electricity tariff → can encourage battery owners to shift to ToU

Results: policy options (2)

What policy option should be adopted?

Capital subsidies are among the most effective policy for consumers, but with the highest

cost for the system

- Enhancing tariffs improves
 profitability by 21% at no cost
- Storage tariff has benefits both for consumers and the system (helping balancing the grid)

Policy	Change in NPV (£k)	Change in NPV per £ invested in storage (%)	Enhancing operation of the system	Additional cost to the system operator	Complexity
30% Capital subsidy	3.4	54	Low	High	Low
Tariff enhancement	1.7	21	Medium	No	Low
Introducing storage tariff	1.4	18	High	Low	Medium to high
Switching to ToU tariffs	0.5	6	Medium	No	No
Switching to real-time tariffs	0.2	3	Medium	No	No

Results: policy options (3)

Final notes

- None of the policy options can make PV + battery net profitable (unless higher than 50% subsidy on battery)
- Barriers to some policies, like storage policy, is the need for metering of storage operation
- Centralized coordination of batteries through an aggregator will offer 11% cost savings for consumers compared to distributed operation, as well as system-level benefits
- Policy options that allow batteries to participate in ancillary services market offer significant improvement in profitability (the case of *Enhanced Frequency Response* in the UK)
- Uncertainty in future electricity prices and tariffs makes tariff-based policies complex for the consumer
- Providing modeling tools for the consumer to estimate the revenues under different future energy scenarios
 - → the consumer makes informed decisions: *high-renewable energy scenarios offer higher private benefits*
- Optimal sizing of storage and PV should not be neglected

More information:

 G. Castagneto Gissey, B. Zakeri, P. E. Dodds, Dina Subkhankulova, Evaluating consumer investments in distributed energy technologies, Energy Policy, 2020 (in press), https://doi.org/10.1016/j.enpol.2020.112008

• E. Pusceddu, Behnam Zakeri, G. Castagneto Gissey: *Synergies between arbitrage and fast frequency response for battery storage systems*, Applied Energy, 2020 (accepted)

 B. Zakeri, P.E. Dodds, G. Castagneto Gissey, What policy options can promote distributed solar PV with battery energy storage? Applied Energy, 2020 (under review)

Thank you very much for your attention!

Please contact us for your feedback or for more information:

zakeri@iiasa.ac.at

Results of Consumer Investments

Input data and assumptions: Tariffs

Tariff scheme	Base value, 2016 (kWh ⁻¹)	Future value
Static	0.15£	Based on quarterly average of modeled electricity prices*
Dynamic (ToU) (Economy7)	Night (0-7h): 0.07£ Day (7-24h): 0.16£	Proportional to corresponding static tariff

^{*} These prices are endogenously calculated from the results of the electricity system model for the future years