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Classification by 1-D CNN
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Applications of 1D CNNs
Real-time motor fault detection

Real-time Motor Condition Monitoring
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Kiranyaz, IEEE Transaction on Industrial Electronics 2016 061112020
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Applications of 1D CNNs
Fault detection in Modular Multilevel Converters (MMC)
(High voltage to direct current conversion)
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2017 Challenge: AF Detection Using Hand-

held ECG Devices

‘ COMPUTING Challenge 2017:

o AF Classification from a short
CARDIOLOGY ™= single lead ECG recording

Computing in Cardiology and PhysioNet,
in recognition of ontstanding achievement, present to

Morteza Zabihi, Ali Bahrami Rad,
Aggelos K. Katsaggelos, Serkan Kiranyaz,
Susanna Narkilahti, and Moncef Gabbouj

tied for
First Place

this certificate of merit for participation
with distinction in the 18th annual
Computing in Cardiology/PhysioNet Challenge

Rennes, France September 27,2017

Objective: To automatically detect AF rhythm using a hand-held ECG device (normal or sinus rhythm,
other rhythms and too noisy rhythms to classify)

Approach: A subset of 150 features (time, frequency, time-frequency domains, and phase space reconstruction )

Base-level Classifiers

ECGs Recorded Using Hand-held Device

22 meta-level features

128 base-level features

________
—————————
Windowing
N & Featur.e
Feature Extraction Extraction
________
---------
________
Feature
Extraction

M. Zabihi, et. al., CinC, Rennes, 2017

F1(Total)

81.85 83

Winner of the PhysioNet/CinC Challenge 2017
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A Simple question:

* Does anybody from the audience use anything from 40s or 50s?
No?

dYes! You all use the classical neuron model from 40s..

W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” Bulletin of Mathematical Biophysics, 5:115-133, 1943
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Modelling the Biological Neuron
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In the brain and nervous system, each neuron conducts electrical signals over three
distinct operations:

* Modification of input signals in Dendrites
* Pooling of the modified input signals in Soma
* Sending pulses when pooled signal exceeds a limit in Axon hillock

S. Kiranyaz, T. Ince, A. losifidis, M. Gabbouj. Progressive Operational
Perceptrons, Neurocomputing 2017.
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Multilayer Perception vs. Generalized Operational Perceptron

Linear (MLP) Neuron I Operational (GOP) Neuron
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Figure 1: Conventional MLP neuron (left) vs. GOP neuron with
Nodal, ¥} Pool, P1™1, and Activation, i1, operators.
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Extend CNN to Operational Neural Networks

Convolutional Layers of CNNs Operational Layers of ONNs
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Figure 3: Three consecutive convolutional (left) and operational (right) layers with the ™ neuron of a CNN (left) and
an ONN (right).

Kiranyaz, losifidis, Ince and Gabbouj, Neural Computing and Applications (2020)
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Denoising Results
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MSE Loss

0.10

0.09 4

0.08 4

0.07 1

0.06 4

0.05 4

Loss

= ONN Training
-== ONN Validation
=~ CNN Training
-== CNN Validation

Y
\“ N, ~ \I,
N \,\«'\ W e ﬂvv

Iteration

Signal to Noise (dB)

SNR

R NS e\as

——_ONN Training

S L TZSAR IO DV Tl

-== ONN Validation

= CNN Training

=== CNN Validation

T T

40 60
Iteration

T

80

100




a

- J Tampere University
Denoising SNR Plots
Train Set SNR Plots for Denoising Test Set SNR Plots for Denoising
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