

Climate and sustainability board games for university teaching

Meeri Karvinen, John Millar (Aalto University) and Jon-Erik Dahlin, (Snowflake Education)

Agenda for the session

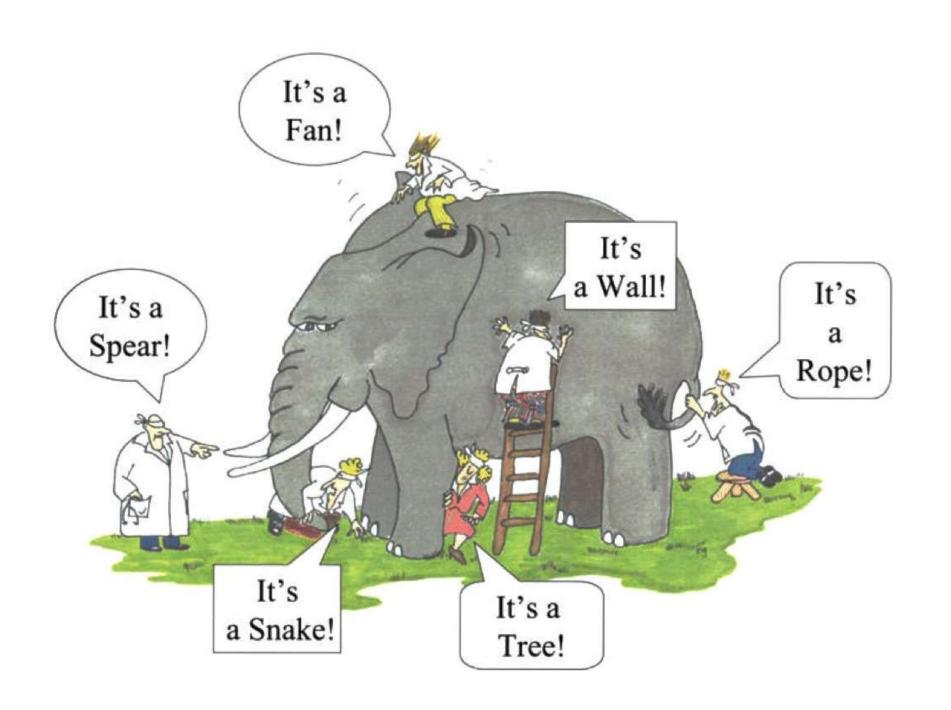
Board games as a pedagogical tool & experiences from Aalto Trying out the games Dilemma and ClimeOut Presenting other games and training available for faculty Q&A, time to check the other games

PAIR BUBBLE!

- What is your experience in different methods in teaching sustainability?
- Do you have experience in board games?

Anthropocene

As of 2020...


...the Earth has lost 58% of all animal species since 1970 ...climate change is now unavoidable – but consequences can be eased ...young people across the world have realized this and gone on strike

The human civilization has become the dominating geophysical force on Earth

More and more countries and accreditation boards force schools to make sustainable development an integrate part of curricula

Many educators find it difficult to integrate sustainability in courses and programmes

Key competences by Wiek et al. (2011)

Systems Thinking Competence

Futures Thinking Competence

Values Thinking Competence

Strategic Thinking Competence

Interpersonal Competence

Wiek, A., Withycombe, L., & Redman, C. (2011). Key competencies in sustainability: a reference framework for academic program development. *Sustainability Science*, *6*(2), 203–218.

y that are Iso develop eded to work on

etencies for

Lear

to keep pace with the on, they encounter creasing complexity and social diversity; rmity; degradation of y depend; and greater nd technological of information is equire creative complexity of the ng processes that go earn to understand

to advance sustainable development (see de Haan, 2010; Rieckmann, 2012; Wiek et al., 2011).

Box 1.1. Key competencies for sustainability

Systems thinking competency: the abilities to recognize and understand relationships; to analyse complex systems; to think of how systems are embedded within different domains and different scales; and to deal with uncertainty.

Anticipatory competency: the abilities to understand and evaluate multiple futures - possible, probable and desirable; to create one's own visions for the future; to apply the precautionary principle; to assess the consequences of actions; and to deal with risks and changes.

Normative competency: the abilities to understand and reflect on the norms and values that underlie one's actions: and to negotiate sustainability values, principles, goals, and targets, in a context of conflicts of interests and trade-offs, uncertain knowledge and contradictions.

Strategic competency: the abilities to collectively develop and implement innovative actions that further sustainability at the local level and further afield.

or achieving the SDGs — Education for Sustainable Development Goals: Learning Objectives

bjectives for

cross-cutting key r sustainability that are DGs. ESD can also develop outcomes needed to work on icular SDG.

ing key competencies for

ne world struggle to keep pace with the gy and globalization, they encounter These include increasing complexity e individualization and social diversity: and cultural uniformity; degradation of es upon which they depend; and greater sure to natural and technological oliferating amount of information is these conditions require creative tion because the complexity of the sic problem-solving processes that go olan. People must learn to understand which they live. They need to be peak up and act for positive change an call these people "sustainability Wals and Lenglet, 2016).

ment that sustainability citizens ey competencies that allow them to ly and responsibly with today's world. ibe the specific attributes individuals self-organization in various complex ns. They include cognitive, affective, ional elements; hence they are an ge, capacities and skills, motives and Competencies cannot be taught. ion. on the basis of experience and

Key competencies represent cross-cutting competencies that are necessary for all learners of all ages worldwide (developed at different age-appropriate levels). Key competencies can be understood as transversal. multifunctional and context-independent. They do not replace specific competencies necessary for successful action in certain situations and contexts, but they encompass these and are more broadly focused (Rychen, 2003; Weinert, 2001).

The following key competencies are generally seen as crucial to advance sustainable development (see de Haan, 2010: Rieckmann, 2012; Wiek et al., 2011).

Box 1.1. Key competencies for sustainability

Systems thinking competency: the abilities to recognize and understand relationships; to analyse complex systems; to think of how systems are embedded within different domains and different scales; and to deal with uncertainty.

Anticipatory competency: the abilities to understand and evaluate multiple futures - possible, probable and desirable: to create one's own visions for the future; to apply the precautionary principle; to assess the consequences of actions; and to deal with risks and

Normative competency: the abilities to understand and reflect on the norms and values that underlie one's actions; and to negotiate sustainability values, principles, goals, and targets, in a context of conflicts of interests and trade-offs, uncertain knowledge and contradictions.

Strategic competency: the abilities to collectively develop and implement innovative actions that further sustainability at the local level and further afield.

Collaboration competency: the abilities to learn from others; to understand and respect the needs, perspe and actions of others (empathy); to understand, relate to and be sensitive to others (empathic leadership); to deal with conflicts in a group; and to facilitate collaborative and

ency: the ability to question norms, d opinions; to reflect on own one's values, perceptions and actions; and to take a position in the stainability discourse.

Self-awareness competency: the ability to reflect on one's own role in the local community and (global) society; to continually evaluate and further motivate one's actions: and to deal with one's feelings and desires.

Integrated problem-solving competency: the overarching ability to apply different problem-solving frameworks to complex sustainability problems and develop viable, inclusive and equitable solution options that promote sustainable development, integrating the abovementioned competences.

Snowflake Education

- Snowflake Education is a small start-up grown from KTH
- We have developed a new method for teaching sustainability
- Our concept is based on:
 - active learning with educational games, and
 - ☐ flipped classroom with our online toolkit
- The whole point is that it should be straightforward to teach sustainability!

Blended learning for sustainability

Active learning

Awareness:

basic knowledge of facts, concepts and orders of magnitude

Flipped classroom

Systems thinking: complexity, resilience, feedback-loops

Embrace
different
views: values,
opinions and
stakeholder
perspectives

Sustainability learning package

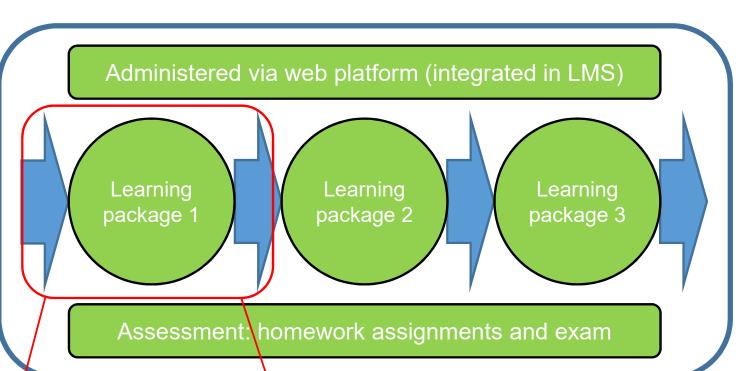
Game seminar (one or several lectures)

Introduction:

- Short lecture
- Discussions around homework
- **Group discussion**

Game session:

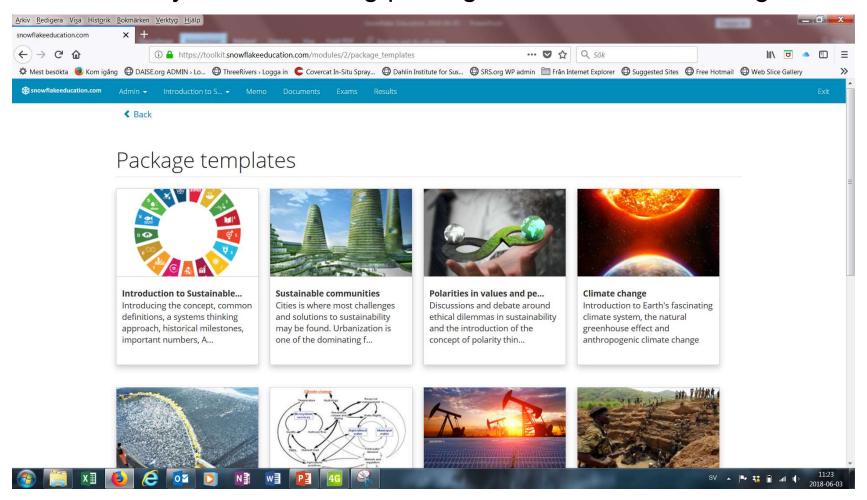
- Spontaneous reactions (fun, instructive & difficult)
- Students' experience
- Teacher moderated discussion

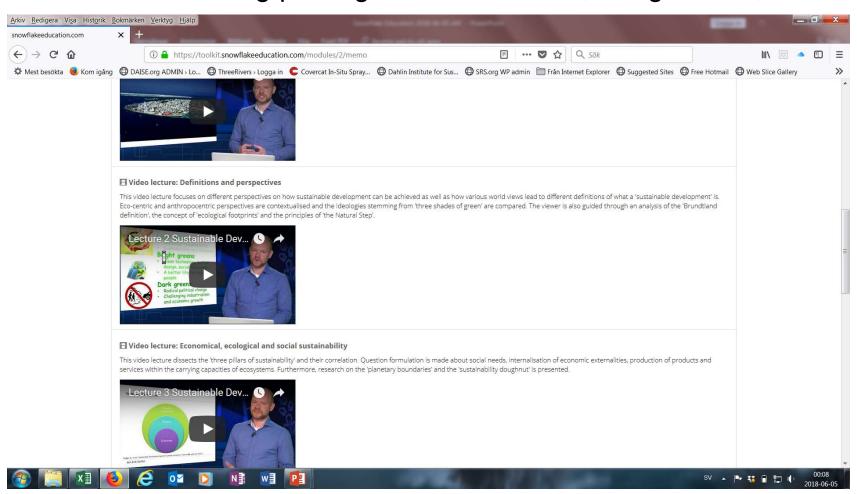

Follow-up

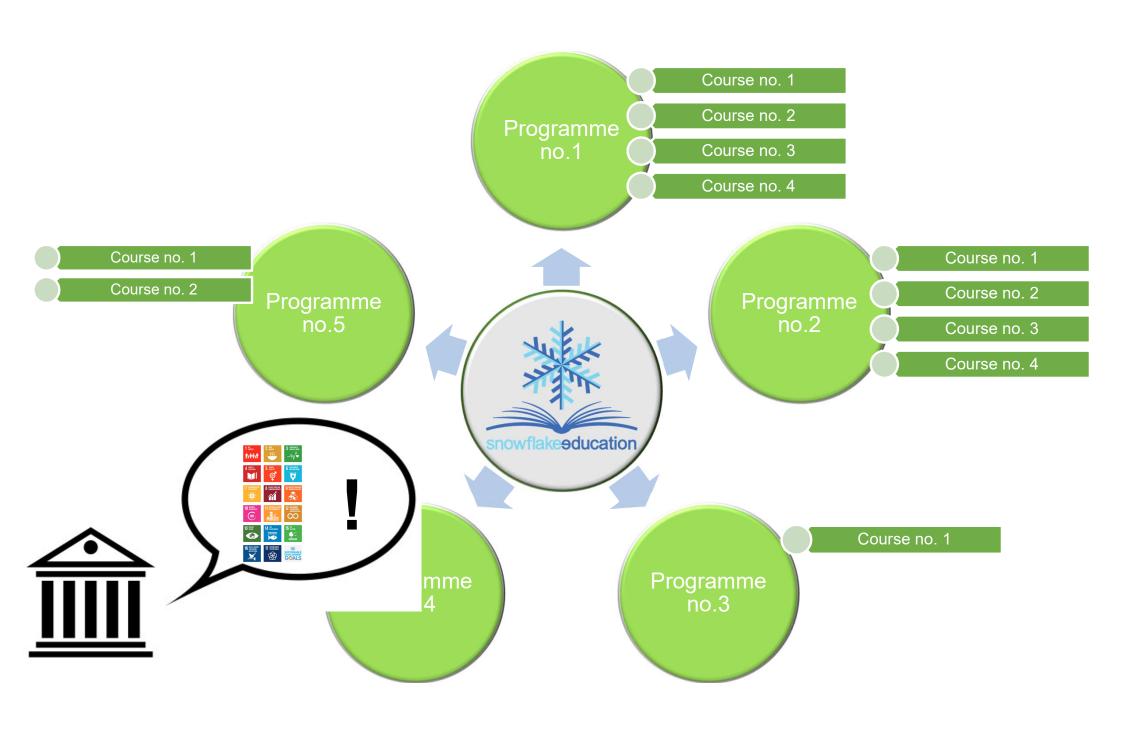
Homework assignment

- Deeper analysis of a specific element from the game
- Connect element from the game to course or subject
- Individual or group assignment
- Including a literature review (references), arguments & reflection

Case assignments


- Specific case connecting the game to specific subject
- Exemplifying; connects experience to real world challenges
- Written assignment or as bridge to follow-up seminar


Snowflake Education Toolkit


✓ Ready-to use learning packages – each based on a game

Snowflake Education Toolkit

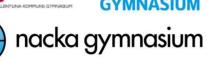
✓ Each learning package: online lectures, assignments, etc.

The games are a great way for students to begin thinking about how to approach seemingly intractable problems

- Professor Richard Fenner, University of Cambridge (UK), user of DILEMMA, Fishbanks and Power Grid

Current customers include:

POLYTECHNIQUE MONTRÉAL



Experiences from Aalto

- Aalto purchased a package of 4 games & SDG cards + a license for 2019-2020 study year (unlimited amount of students)
- During Autumn 2019 Dilemma used in 2 courses
 - Creative Sustainability & Water and Environmental engineering

- Monthly informal game nights started just last week
- → piloted in Nov 2019 with students
- → every month a new game played together with students and teachers
- ClimeOut will be played in Climate.now course in April-May

Insights from teachers

- Ready-made, but editable material and learning outcomes: easy to start designing your teaching
- Easy to add content you wish to emphasise

- Possibility to embed the Snowflake platform in your own (Moodle/MyCourses)
 makes it smooth for students to use
- Students seemed to have a good time and the game helped them to move away from simple solutions and to build arguments
- A good alternative pedagogy amongst the lectures

Feedback from students

Dilemma, right after the board game seminar:

- Fun and engaging way to learn
- Reflection combined with academic content was good
- New perspectives about sustainability
- Playing with a pair reduced the stress (caused by debating)

After the course the students wrote formal feedback:

"I was skeptical about the board game. However the board-game turned out to be useful as a practice for debating and making sure that you question your own views."

"It was fun to have the board game and argument with the group. Would have been interesting to see the professors having a debate, hear their arguments, as they surely have more knowledge about the themes that were approached."

In The Loop: Informal game night for students (a pilot)

"I love that this was organized! I feel that the introductory part especially has a lot of potential to convey new information to the players. I don't have a strong background in rare earth minerals or material engineering, so hearing about rare earth minerals + what they are used for was especially useful for me!"

"Including these kind of games into courses would be interesting, because we can learn easier with interaction, and empathy."

Let's play some games!

Exercise no. 1: Play Dilemma

- 1. Sit in groups of (about) 6 people in each
- 2. Divide into 3 pairs of 2 at each board
- 3. Open the box and put the 'stuff' on the board on their appropriate places
- 4. "Read the rules for 5 minutes and start playing..."
- 5. Play the game for 15 minutes
- 6. As you play, make sure to go through about 5-10 **step-by-step cards**; also discuss those from an educator's perspective
- 7. Go through about 2-3 **dilemma cards**, discuss those (after a few rounds, skip to the dilemma cards)

Exercise no. 2: Play ClimeOut

- 1. Sit in groups of (about) 6 people in each
- 2. Divide into 3 pairs of 2 at each board
- 3. Open the box and put the 'stuff' on the table
- 4. There are three mechanisms in the game, make sure to try all three:
 - The puzzle
 - The glossary
 - The quiz
- 5. For each 'duel': one team challenges one of the other teams and the third team act as judges
- 6. The hourglass is used as a time measuring device in the 'glossary' duel only

Debriefing

Dilemma and ClimeOut in the classroom

The typical game seminar:

- Encouraging introduction/exercise [45 min]
- Dilemma or ClimeOut game session [90 min]
- 3. Debriefing [30 min]

...but we have seen educators use it in many different ways, for example:

- 45 min lecture, embedded in a series of lectures
- Centrepiece for a theme day about sustainability
- Lend-home games for students, discussions in class

Values thinking

Dilemma (3-6 players):

- ✓ Introduction to sustainability
- ✓ The game includes fact-based quiz-like questions, and...
- ✓ Discussion-oriented sustainability dilemmas

Values thinking

Dilemma (3-6 players):

- ✓ Introduction to sustainability
- ✓ The game includes fact-based quiz-like questions, and...
- ✓ Discussion-oriented sustainability dilemmas

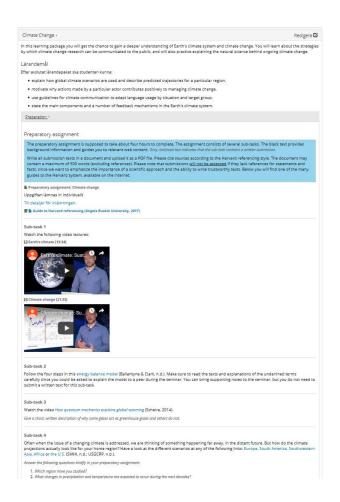
In the associated online material:

- ✓ Learning package around values, opinions and conflicting goals
- ✓ Learning package around constructive debate and polarities

The debriefing

- Start by asking students: "what did you think about this exercise?"
- Generally, they answer three things:
 - 1. "It was FUN!"
 - 2. "And we LEARNED stuff!"
 - 3. (after a short paus, with wrinkled foreheads) "and it was actually DIFFICULT!"
- When appropriate, let the discussion follow with what students spontaneously reflect on
- But you can also ask specifically:
 - "What did you think about the green cards (step-by-step)?"
 - "What did you think about the yellow cards (dilemma)?"
- Select a few cards on beforehand, that you have chosen for discussion (you can put them on slides)
- The debriefing should cover what you have on your checklist, for example:
 - There is no right or wrong answer to these dilemmas, but many different opinions
 - Debates can be really constructive, when debaters are respectful and honest
 - Make sure students understand the importance of learning basic facts

Climate change



Clime Out (3-6 players):

- ✓ Introduction to Earth's climate and climate change
- ✓ The game includes fact-based quiz-like questions, ...
- ✓ ... interactive puzzles, and...
- ✓ ... glossary literacy duels

Climate change

Clime Out (3-6 players):

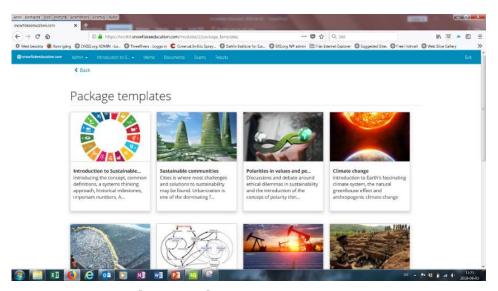
- ✓ Introduction to Earth's climate and climate change
- ✓ The game includes fact-based quiz-like questions, ...
- ✓ ... interactive puzzles, and...
- ✓ ... glossary literacy duels

In the associated online material:

- ✓ Learning package around basic climate knowledge
- ✓ Introduction to concepts such as energy balance, the greenhouse effect, global warming etc.

In the Loop

Clime Out

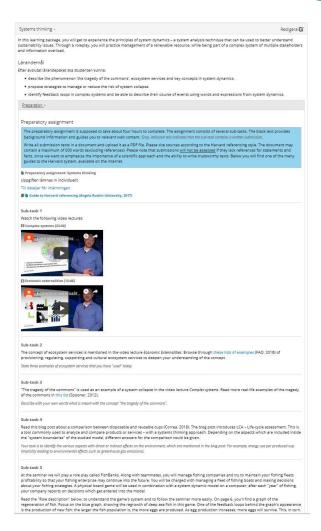

Fish Banks

Power Grid

Sustainable Development Goal-cards

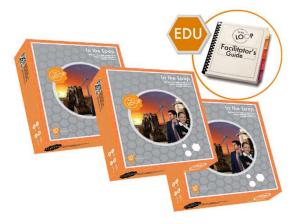
Snowflake Education Toolkit

Systems thinking


FishBanks (4-40 players):

✓ Introduction to system dynamics, ecosystem services, the tragedy of the commons, (renewable) resource economy and decision making with limited access to information

Systems thinking

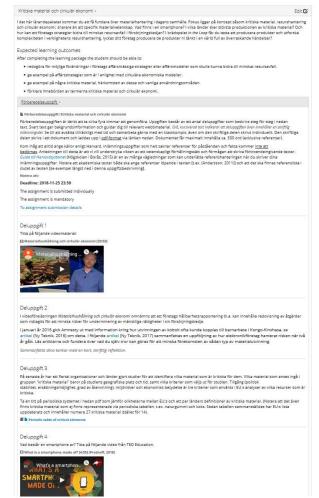

FishBanks (4-40 players):

✓ Introduction to system dynamics, ecosystem services, the tragedy of the commons, (renewable) resource economy and decision making with limited access to information

In the associated online material:

- ✓ Learning package around systems thinking
- ✓ Introduction to concepts such as feedback-loops, resilience, tipping points etc.

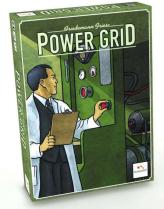
Critical materials, material flows and life cycle thinking



In the Loop (3-6 players or 3-6 teams of 2):

- ✓ Introduction to critical materials, material flows & circular economy
- ✓ Strategy type game
- ✓ Each team takes on the role of a production company, trying to find the resources for their products

Critical materials, material flows and life cycle thinking



In the Loop (3-6 players or 3-6 teams of 2):

- ✓ Introduction to critical materials, material flows & circular economy
- ✓ Strategy type game
- ✓ Each team takes on the role of a production company, trying to find the resources for their products

In the associated online material:

- ✓ Material flows and criticality
- ✓ Subtask around product life-cycles
- Subtask around circular business models

Energy systems

Power Grid (2-6 players/teams):

- ✓ Introduction to energy systems, utility company strategies, systems thinking, energy resources, and resource economy
- √ Strategy game
- ✓ Each team takes on the role of a electricity utility company, building powerplants and trying to optimize their economy for fuels

Learning package:

✓ Based on learning energy systems and sustainable energy by rewriting the original game rules

My experience from the training

- Peer support
- Small "class" facilitated sharing and discussions
- First time ever studying my "own" research topic in a course
- Encouraged to take action and network around sustainability integration
- Motivated to take part in SDG-integration work in Aalto
- Inspired to start planning new actions: courses, collaboration, research ...

Climate and sustainability board games for university teaching

Meeri Karvinen, John Millar (Aalto University) and Jon-Erik Dahlin, (Snowflake Education)

