

Dissertation press release**2.1.2020**

Carbon nanotubes synthesized from liquid precursors

Title of the dissertation Gas-phase synthesis of single-walled carbon nanotubes from liquid carbon source for transparent conducting film applications

Contents of the dissertation The transparent conducting films (TCFs) comprising of single-walled carbon nanotubes (SWCNTs) have various applications like solar cells, touch screens, organic light-emitting diodes, and thin-film transistors (TFTs). Particularly, the SWCNT TCFs on a polymer substrate can maintain their properties well under mechanical bending and stretching. Thus, high-yield production of SWCNTs with desired morphological and structural features for the fabrication of highly conductive TCFs is of significance for their scaled-up applications. As for the representative application of SWCNTs in TFTs, semiconducting-enriched SWCNTs (s-SWCNTs) are preferable. This dissertation focuses on the high-yield production of SWCNTs for conductive film applications and the synthesis of s-SWCNTs. A dedicatedly designed aerosol reactor was constructed for SWCNT synthesis using liquid hydrocarbons (i.e., ethanol, toluene) as the carbon source injected with a syringe pump. Additionally, the roles of sulfur in the growth of SWCNTs were explored. By selecting toluene as the carbon source, SWCNT TCFs exhibiting the sheet resistance of ca. 57 Ω/sq at 90% transmittance at 550 nm were fabricated with high yield. High-purity s-SWCNTs were also continuously produced with ethanol as the carbon source and methanol as a growth enhancer. The s-SWCNT purity determined from the optical absorption spectrum can be higher than 95%. The studies presented in the dissertation have laid a solid foundation for the industrial-level production and applications of SWCNTs and SWCNT TCFs.

Field of the dissertation Engineering Physics

Doctoral candidate Erxiong Ding, M.Sc.

Time of the defence 17.01.2020 12:00 noon

Place of the defence Aalto University School of Science, lecture hall T2, Computer Science building, Espoo

Opponent Professor Milo Shaffer, Imperial College London, United Kingdom

Custos Professor Esko I. Kauppinen, Aalto University School of Science, Department of Applied Physics

Electronic dissertation <http://urn.fi/URN:ISBN:978-952-60-8893-8>

Doctoral candidate's contact information Erxiong Ding, Department of Applied Physics, erxiong.ding@aalto.fi and +358 50 3048922