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1. Introduction  
The project started from the observation that laser scanning and photogrammetry related technology has 

matured but their applications in construction have been limited to very few use cases, such as manual 

comparison of as-built point clouds to the design 3D model to evaluate quality and progress. Our previous 

research project, Intelligent Construction Site (iCONS), increased the appetite of construction companies 

for real time data by demonstrating that technology can detect wasted effort which cannot easily be 

identified by humans. ICONS was not able to solve the problem of automating production control 

processes because it was based on sensors carried by people or attached to materials or equipment. 

Although it was possible to evaluate where people, materials and equipment were and analyze their 

movements, images are required to know what those resources achieved and how well the work was 

done.  The goal of the research project, Reality Capture, was to investigate opportunities for automatic 

monitoring of progress, automatic quality checking of construction and visualization of progress utilizing 

Augmented Reality technologies. 

The research project was funded by Business Finland, Aalto University and a consortium of companies: 

Fira, Rudus, YIT, Vionice (acquired by Vaisala during the project) and Umbra. The project’s steering group 

included Otto Alhava (Fira), Sakari Aaltonen (YIT), Mikko Kuusakoski (YIT), Mika Tulimaa (Rudus), Markus 

Melander (Vaisala), Sampo Lappalainen (Umbra), Matti Vaaja (Aalto), Antti Peltokorpi (Aalto), Yu Xiao 

(Aalto) and Olli Seppänen (Aalto). Results were reviewed quarterly in steering group meetings. 

We set out to investigate the feasibility of using currently commercially available hardware to capture 

data with minimum human intervention to get an accurate picture of the status of construction project. 

Because the problem is very wide and possible applications are unlimited, we selected five different 

applications for research. The applications were selected by the three end-user members of the 

consortium – 1) Fira, a general contractor also developing technology, 2) YIT, the largest construction 

company in Finland who have dedicated resources looking at new technologies and 3) Rudus, an 

innovative precast and ready-mix concrete manufacturer. For each case, we evaluated different methods 

for data collection and developed prototype algorithms to automatically understand reality. One of the 

applications resulted in a provisional patent and several applications were novel enough to warrant 

publication of the utilized method in scientific conference or journal papers.  

In addition to end user companies, our consortium included a graphics software technology company 

Umbra and a computer vision company Vionice (acquired by Vaisala during the project).  They were 

planning to use the findings of the project to develop commercial products. However, it turned out in the 

project that the data collection problem is much larger than the technical problem of designing the 

algorithms. Regardless of case, practical obstacles hindered the standardized collection of image data. 

The issues encountered were not technical but rather process related. The current construction process 

is not well suited for standardized collection of data and in order to enable machine vision approaches, a 

systemic change of construction process is required. Because of data collection issues, it is presently 

difficult for technology companies to create a business case for computer vision in buildings. Either the 

technology companies would need to be heavily involved in data collection, for example with services, or 

the construction process should change first.  

This final report first describes the requirements for Reality Capture from the Finnish consortium and our 

international partners. Secondly, we describe how the use cases were selected. The results related to each 
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use case are described next, including details related to algorithm implementation, data collection issues 

and practical guidelines for commercial companies. Finally, the results are compared to goals and future 

development directions are introduced. 

2. Requirements for Reality Capture  
We interviewed the consortium companies and companies from United States / California (3 companies), 

Brazil (4 companies) and China (3 companies). The companies were asked about the main challenges in 

their production control and quality inspection processes, do they use any real time tools for monitoring 

progress or quality control, what would be the expected benefits of real-time information based on 

images and/or laser scans, and which use cases would be most interesting to them and potential interest 

to validate the results of research. 

The main challenges were found to be quite consistent between countries. All companies agreed that it is 

currently impossible to get real-time and precise data. Lack of real time data means that it is hard to keep 

people working on the right things and prevent them from starting work that they are not supposed to 

work on. This leads to a very fast initial round of construction but a lot of working time goes to “pick-up 

work” where something was wrong or something was missing and the work did not get completed. In 

Brazil, there were additional issues with quality inspections because they cost a lot of money and it is hard 

to get trained inspectors, leading to low quality. Everyone agreed that both production control and quality 

processes are very manual, tedious work where it is very easy to miss something critical. People see things 

that are wrong but do not report them.  

Some digitalization of processes has been attempted by companies. In Finland, Congrid is a software used 

for by Fira and YIT for quality inspections. Fira has developed SiteDrive to allow for self-reporting of 

progress by the workers. In Brazil, California and China, similar tools digitalizing quality issues were found 

(e.g. Snagger, Autodoc, Procore, BIM 360 Field). In California and China, Robotic Total Stations and laser 

scanning was done a lot to verify geometry. In addition, virtual mock-ups based on VR technology were 

used by a company in California to make quality requirements clear for workers.  

All respondents emphasized the importance of checking productivity, for example by having a time series 

of images from the same location. Augmented Reality applications where images taken in the same 

location at different times are added on top of reality would allow the user to know what is inside a 

structure. Especially quality checking Mechanical, Electrical and Plumbing systems would be important for 

construction companies because that scope is not understood well and it is hard to evaluate progress or 

quality manually. Comparison of plans to actual came up from each country. A commercial system should 

be able to say at the minimum if an element has been installed and if it is in the right location. However, 

it would be very beneficial also to look for visual quality issues like colors, gaps etc. which are typically not 

in a BIM model and which need to be inspected manually by an experienced inspector. Overall, the 

requirements were found to be consistent between countries and there were no automated commercial 

solutions, except for comparison of point clouds and BIMs where several software packages were being 

piloted in California but they were not yet in wide commercial use. 

3. Selection of case examples   
Because of limited budget the consortium agreed in the beginning that we will focus on carefully picked 

specific example problems where both images and point clouds can be utilized and both productivity and 
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quality aspects are considered. Each end-user company selected two case examples for consideration and 

we tried to ensure that all aspects are included.  

For progress controlling, we had three case examples. Fira selected two examples where the progress in 

bathrooms and kitchens of a plumbing renovation project should be automatically evaluated based on 

images only, without any access to design information. These types of projects do not typically have BIM 

models, so using design information would be impractical. In contrast, YIT selected a case where there 

was a BIM model and point clouds were created based on two top-down cameras mounted on a crane. 

The goal was to evaluate the progress of structural works by using the images and / or point cloud 

captured by the technology. For progress analysis, the case study selection worked out well because we 

had two completely different challenges to solve and the problems were slightly different from problems 

that have been solved before. Earlier algorithms for point cloud based progress use point clouds from 

laser scanners which provide a very dense point cloud. The crane camera case required new innovations 

because crane cameras create a very sparse and incomplete point cloud but give very detailed information 

in images taken from top down. 

Regarding automatic quality control, we considered two cases. YIT selected installing molding as a case 

because there are many quality errors, such as gaps or bumps in molding or door frames which get noticed 

by tenants or apartment buyers. A lot of molding is installed each day, so it is easy to become blind and 

not notice every single quality error. The idea was to automate the quality control process so that workers 

could take a video of each apartment after they finished the work and the application could automatically 

highlight potential quality issues. Rudus selected the reinforcement of precast concrete stairs as their 

main point of interest. Each staircase has a lot of rebars and it is possible that some are missed before 

pouring concrete. The task was to count different types of rebars so that the numbers could be compared 

to reinforcement schedule (case 1) and to compare rebars to BIM models of complex staircases to 

highlight if something was missing (case 2). These cases related to quality were sufficiently different to 

cover many interesting aspects: 1) quality without BIM model requiring classification of images 2) quality 

without BIM model requiring object recognition from images 3) quality with BIM model requiring 

comparison of images with BIM models.  

For each case, data collection was first planned by trying to find an easy way to collect data that could be 

scaled in a commercial solution. Then data was collected and, if required by the algorithm, classified. 

Different algorithms were then tested to see how good results could be achieved with the data we were 

able to collect. Finally, a way to visualize the results, preferably by using some form of AR approach was 

developed as a prototype. The following section describes the results of each case example. 

4. Case study 1 – Detecting progress in bathroom and kitchen 

renovation 
4.1 Overview of requirements 
Construction companies collect photos of different stages of a renovation process but such photos often 

contain only the timestamps and the name of the project as meta-data. We are looking for a system that 

extracts the temporal logic from the photos of ordered classes to provide relevant statistics of a 

construction process, in our case - bathroom/kitchen renovation. The goal was to have construction 

workers collect photos with a data collection mobile application. The progress would then be 
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automatically assessed in each room and the site manager could use a monitoring tool to remotely 

evaluate progress and make necessary planning and management decisions (Fig.1).  

 

Fig.1 Progress inspection system. 

 

4.2. Developed solution: Deep learning algorithms for progress detection. 
We developed a computer vision-based progress inspection system that provides sequential stage 

identification. The system processes every new batch of photos associated with specific attribute (for 

example: location, apartment number, date and time,...etc.) and outputs the progress update in real time. 

In the core of the system is a deep learning model that requires a substantial amount of training examples 

that cover the whole process. For this purpose we developed an Android data collection app (sec. 4.3). 

During the training the model is given pairs of images with their temporal order information. The learned 

temporal dynamics of the process helps to recognize the visual changes in the renovated environment 

and estimate the progress of the renovation. The proposed solution improved recognition accuracy for 

both bathrooms and kitchens: from 41.2% to 48.4% and from 37.6% to 42.3%. A more pronounced 

improvement is observed in Kappa Index which reflects the temporal precision: from 0.64 to 0.80 and 

from 0.70 to 0.77. Kappa Index varies from zero to one, zero means full temporal disagreement and one 

means full agreement.  

Table 1. Interpretation of the Kappa Index. 

Kappa Index Strength of agreement 

<0.20 Poor 

0.21 - 0.40 Fair 

0.41 - 0.60 Moderate 

0.61 - 0.80 Good 

0.81 - 1.00 Very Good 
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Table 2. Bathroom results 

Method Accuracy Kappa Index 

Baseline CNN 41.2% 0.64 

SIFT 27.3% 0.35 

Proposed Solution 44.4% 0.80 

Table 3. Kitchen results 

Method Accuracy Kappa Index 

Baseline CNN 32.6% 0.70 

SIFT 22.3% 0.34 

Proposed Solution 42.4% 0.77 

 

4.3. Data collection and validation 
Android app for data collection 

We developed an Android data collection application, which is designed for taking and labeling photos 

on-site. Fig. 2 illustrates the user interface: the data collector can take photos and associate them with 

the corresponding location and renovation step.  

Fig. 2. User interface of Android application for collecting data. (A) Apartment names list. (B) Grid of 

bathroom photos. (C) Task adding action. (D) Progress stage selection list. 

 

Description of datasets 

The Reno-2018 dataset consists of two parts: bathroom photos and kitchen photos, each covering a 

different renovation process. The bathroom part is composed of photos, taken from 7 bathrooms at 10 

different renovation stages. The kitchen part covers 8 renovation stages observed in 6 kitchens. All photos 

were taken during February-March of 2018. Samsung SM-G920F mobile camera (resolution 5312×2988) 

and Sony E6653 (resolution 3840×2160) were used to take photos. The photos were labeled by 
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construction specialists according to the internal renovation documentation norms. After the 

preprocessing, the dataset contains 3708 bathroom and 1486 kitchen images. 

Fig.3. Example photos of 10 stages of bathroom innovation. 

Fig.4. Example photos of 8 stages of kitchen innovation. 

 

4.4. Challenges and learnings 
We see at least three challenging aspects of the datasets. First, the division of a continuous process into 

stages can be subjective, but such discretization is necessary, as the data collection was performed in 

batches. Second, a stage can contain visual features of the previous stage, for example, parts of the 

conduits system may be visible during the laying the concrete floor stage (See Fig. 3 for examples). Third, 

due to the practical aspects of the renovation, the stages are not strictly ordered: some classes may 

include images with visual clues from a different temporally adjacent class.  

The Reno-2018 formulates an ordinal image classification problem – a discrete work progress estimation 

task. One alternative option was to define the task as a regression task: for every photo (or batch of 

photos) provide a % of completed work. The choice of defining the task as a classification, rather than a 

regression problem was made based on the following reasons. First, the image classification deep learning 

methods are more developed and understood. Second, photo acquisition was performed in irregular time 

slots, resulting in a more chronologically fragmented dataset. And third, the true completion degree holds 

ambiguity that is difficult to control for, namely should we take the actual time passed since the initial 

phase, or should we use an educated but still subjective progress estimation given by a construction 

manager.  

In total we collected ∼ 7000 photos from 7 bathrooms and 6 kitchens that were originally distributed 

across 30 classes. Majority of the classes were underrepresented, having less than 50 photos. This led to 

the decision to dismiss some classes and merge similar consecutive classes. We also kept the initial and 

the final stages, despite them being underrepresented. 
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The modern computer vision techniques rely strongly on high quality labeled data. The difference in 

performance for the bathroom and kitchen cases indicates the necessity of more dense representation of 

the stages. To this day, the proposed deep learning models require powerful GPUs which makes usability 

of the methods limited to the specific set-ups. 

4.5. Guidelines for developing a commercial solution 
An effective commercial solution requires a streamlined data collection routine. The proposed data-driven 

methods can benefit from new incoming labeled data. The launch of the application should include a 

“beta-testing” period where potential users would correct for false stage identification. Such a feedback 

loop would greatly enhance the model performance. 

5. Case study 2 – Progress detection based on crane camera 

images 
5.1 Overview of requirements 
The objective of this case was to study the potential of crane cameras for automated progress monitoring 

of construction sites. Crane cameras offer a fully automated, convenient and cost-effective alternative to 

other technologies such as laser scanners and drones to capture visual data of construction sites. 

However, their utility for progress monitoring remains largely unexplored. YIT installed a crane camera 

system developed by Pix4D which generates 2D images and 3D point clouds. We were required to 

automatically extract useful information from the 2D and 3D data that could be used to infer construction 

progress. 

5.2 Data collection  
Two cameras were mounted on the jib of a crane on the Tripla construction site in Helsinki. The cameras 

snapped pictures when the jib of the crane moved. The resulting 2D images offered an overhead 

perspective of the building under construction. Once enough images are collected for a day, the Pix4D 

solution automatically creates a 3D point cloud from the images. The images and point clouds were stored 

on a cloud server.  For the VBUILT algorithm (Section 5.3.1), 40 point clouds spanning August 17th, 2018 

to November 23rd, 2018 were used. For the MBUILD algorithm (Section 5.3.2), eight point clouds from 

the same duration were selected. For the solution described in Section 5.3.3, 84 images were selected. 
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Figure 5:  Algorithms (VBUILT and MBUILD) for processing crane camera point clouds 

 

5.3 Developed solutions 
The solutions for processing the 3D point clouds are illustrated in Figure 5 and explained below. 

5.3.1 VBUILT: Volume-based Building Extraction for As-Built Point Clouds 
This algorithm was designed to automatically extract buildings from the construction site point cloud for 

both georeferenced and non-georeferenced point clouds. The basis of the solution was the idea that 

buildings generally have larger volumes than non-building elements. First, we extracted the ground plane 

of the construction site using a model fitting algorithm called MSAC (M-Estimator Sample Consensus), 

followed by clustering the above-ground point cloud using Euclidean distances, after which we 

determined the volumes of the 3D convex hulls (essentially, an outward wrapping of the 3D clusters). The 

largest convex hull volumes were labeled as buildings and the non-building elements were then removed. 

The algorithm thus outputs a construction site point cloud containing only the buildings. Testing the 
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solution on 40 point clouds spanning August 2017 to November 2017, the accuracy was 100%, meaning 

that buildings were always correctly distinguished from non-building elements.  

5.3.2 MBUILD: BIM-based building extraction and alignment for multi-building point clouds 
In order to effectively use the BIM model, this solution requires that the point clouds are georeferenced. 

The core idea of the algorithm is to use the BIM point cloud (obtained by converting the BIM model) as a 

building-pass filter so as to remove the non-building portion of the site. First, the as-built point cloud is 

converted into the coordinate system of the BIM model. Then, building-pass filtering is used to remove 

most of the non-building portion of the site. Ground removal is performed using the z-histogram  of the 

base portion of the building, which is much faster than the MSAC-based ground removal used in VBUILT. 

Finally, alignment is performed by aligning the xy projections of the BIM and as-built point clouds using 

the standard Iterative Closest Point (ICP) algorithm, while the yz projections are aligned by matching the 

edges of their bounding boxes. Note that building-pass filtering is performed strategically at multiple 

stages in the algorithm to obtain a good delineation of the building. This algorithm was tested for eight 

point clouds. All the point clouds were successfully filtered and aligned. From the aligned cloud, we 

calculated the floor number by observing the height of each section of the building. The results are shown 

in Table 4. Note that floor estimation was performed for two sections of one building only, since the point 

cloud corresponding to the other sections of the building and to the other buildings was too fragmented 

due to incomplete coverage by the crane cameras. 

        Table 4:  Floor estimation results                  

  Actual floor Estimated floor 

PointCloud# Day 
(dd/mm/yyyy) 

Section 1 Section 2 Section 1 Section 2 

1 17/08/2018 8 6 8 6 

2 20/08/2018 8 6 8 6 

3 01/10/2018 10 9 10 9 

4 01/11/2018 11 10 12 10 

5 05/11/2018 12 10 12 10 

6 07/11/2018 12 11 12 11 

7 13/11/2018 12 11 12 11 

8 19/11/2018 12 11 12 11 
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The output of this algorithm for a single building was fed to the UMBRA viewer. Figure 6 shows the 

results.  

 

Figure 6:  Aligned point cloud viewed on UMBRA viewer  

 

5.3.3 Slab state recognition from crane camera images 
Once an aligned point cloud is achieved, we could automatically map from specific points on the point 

cloud to the 2D images used to create it. The images provide a clear view of the formwork and rebar 

placement on the precast concrete slabs of the buildings. We implemented a strategy to automatically 

infer the state of the slab, whether it contained no formwork, formwork only, both formwork and rebar 

or completed rebar. We framed this as a scene recognition problem and applied the Bag-of-Visual Words 

technique to train a Support Vector Machine (SVM) classifier to classify the slab state based on the slab 

images. With only a small number of images (see Table 5) of each slab state needed for training, we 

achieved a testing accuracy of 100%. The slab images that were input to this algorithm were prepared 

manually. Figure 7 illustrates this solution.  

 

Figure 7:  Slab state recognition solution 
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Table 5:  Size of complete image set and training set for slab state recognition 

Count 

Label All images Training images 

No Formwork (NF) 39 3 

Formwork (F) 30 4 

 Rebar (R) 7 1 

Rebar Complete (Rc) 8 1 

5.4 Challenges and learnings 
Due to incomplete coverage of the construction site by the cameras, the point clouds were fragmented. 

The most complete portion of the point cloud showed half of the façade of a building and a good view of 

the roof slabs. The rear was completely missing since it is not within the camera’s field of view. Only a 

small segment of other buildings was available. This made analyzing the point clouds challenging and 

limited the information that could be extracted. Future projects should consider how more crane cameras 

can be placed to extend coverage or examine a possible integration with drone images or images from 

fixed cameras. 

Since the data for the early stages of the building was not available, we could not test the algorithms for 

these stages. The VBUILT algorithm especially needs to be tested for when the volume of the building may 

be less than the surrounding non-building elements. Identifying cranes using their typical geometrical or 

color features may be required at the early stages to augment the volume-based analysis.   

In some cases, point clouds were not georeferenced due to a failure of image geotagging. Aligning non-

georeferenced point clouds with the BIM model is difficult and unreliable. It is more practical to ensure 

georeferencing rather than invest resources in aligning non-georeferenced point clouds. 

There were large variations in point cloud density in some cases. Typically the point cloud density was 

around 1000 points/m3, but in some cases dropped to 3 points/m3 and in another case increased to 

37,233 points/m3. For the VBUILT algorithm, this required adjusting some parameters to work effectively 

for different densities. Ensuring that the point cloud density stays within a predictable range would help 

avoid unpredictable results. 

 The as-built point cloud was slightly out of scale with respect to the BIM model, which affected the 

accuracy of floor estimation. Automatically equalizing the scale of the as-built point cloud and BIM model 

should be addressed in future work. 

Processing the point clouds is usually computationally intensive. Computers with powerful General 

Processing Units (GPU) should be utilized to avoid long processing times.  

The UMBRA viewer needed a suitable ‘connecting radius’ setting to create a viewable model. The radius 

needs to be large enough (or the point cloud density needs to be high enough) for the system to connect 

points to form surfaces.  



   
 

 14  
 

5.5 Guidelines for commercial solution 
A few processes that were manually performed would require automation for a commercial solution. 

Point clouds and images should be automatically pulled from the cloud to be fed to the algorithms. IFC 

files should be automatically converted to point cloud format (.las or .ply). An automatic mapping from 

points on the point cloud to the corresponding 2D images would need to be developed. For the UMBRA 

system, a strong GPU is needed to avoid Z-fighting in the viewer.   

6. Case Study 3 – molding defect detection 

The aim of this case study is to recognize bad quality molding from the photos. Often workers become 

‘blind’ to such defects therefore an automatic computer vision solution is necessary to assist in quality 

control. In the pilot study we had access to 1556 ‘good quality’ examples and 374 ‘bad quality’ examples 

(table 6). 

Table 6. Distribution of photos 

 Number of photos 

Good quality 1556 

Unlevel 10 

Gap 202 

Ending 19 

Damaged 89 

Bump 35 

Other 19 

The accuracy for the binary classification between good/bad quality examples was 84.5%. The limitation 

was mainly caused by the inconsistency in the data: low number of bad quality examples and their high 

variety. The defect localization showed partial success (Fig. 8) correctly identifying the area of the defect, 

but for a more consistent result a substantial amount of labeled data is required. The applied localization 

method only used the label information and only used correlation statistics to detect defects. That means 

that the method finds the common visual aspects of the images that contain defects and bases the 

localization on those statistics. 

In order to solve the problem robustly, the data collection strategy requires two improvements.  Firstly,  

more bad quality examples that would represent different error types more completely are required. 

Secondly, it is a requirement to get  more detailed information on the location of defects. With more 

photos of different type, the scalability and the ability to recognize different types of defects  could be 

improved. With more detailed information on the location of defects, it would be possible improve the 

precision of defect localization approach.  
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Fig. 8. Defect localization results. 

7. Case study 4 – Rebar detection in precast elements 
7.1 Overview of requirements 
In this case case, the precast staircase factory is interested in an automatic inspection system in which the 

installed rebars are recognized. The recognized rebars can be compared with the design and the 

dimensions of the staircase can be measured automatically for estimating the volume of the concrete 

poured into the staircase rebar frame. We are looking for a system that can localize the staircase of 

interest in the factory, and then recognize its currently installed rebars. 

7.2. Developed solution 
Algorithms  

As illustrated in Figure 9, the proposed solution contains three step modules. First, the staircase 

localization module is responsible for detecting the staircase in the photo. The core of the module is 

implemented by Mask RCNN. After localizing successfully the location mask of the staircase,  Rebar 

detection and classification module will recognize the current rebars in the area of the staircase. In this 

second module, Mask RCNN is also implemented. We separate staircase localization and rebar detection 

to increase the accuracy of rebar detection because we can narrow down the search regions by just 

looking at the localized staircase. The final step is to compare known setup of rebars of the staircase design 

with current detected rebar installation to estimate the percentage of completion of rebar installation.  

 

Figure 9.   Algorithm for inspecting the progress of installing rebars on staircases. 
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Web services 

Illustrated in figure 10, the solution consists of four main parts: image capture and transfer from the Rudus 

factory, processing and information storage on an Aalto server, 3D model optimization and viewing 

provided by the Umbra Composit platform, and an end-user web application. 

Fig. 10. Architectural overview of the developed solution in the Rudus case study. 

At the factory, images are captured periodically (for details about the camera setup, see section 7.3) and 

transferred to a server managed by Aalto via Secure Copy Protocol (SCP). The received images are fed to 

a machine learning algorithm that extracts an image of the staircase and detects the individual reinforcing 

bars. 

The cropped and aligned staircase image from the staircase detection stage is attached as a texture onto 

a 3D model of the staircase (obtained by manually preprocessing a provided BIM model in IFC format) and 

the model is uploaded into Umbra Composit, a cloud platform for sharing 3D datasets using web 

technologies . Results from the rebar detection stage (the counts of three types of rebar) are stored in a 

database alongside with the respective Umbra 3D viewer URL. Finally, a web application, a screenshot of 

which is shown in figure XZ, fetches the information about detected rebar and embeds the Umbra 3D 

viewer to show progress to the end user. (Figure 11) 
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Fig. 11. A screenshot of the web application developed for the Rudus case study. 

 

6.3. Data collection and validation 
Camera setup 

The camera system includes a mini PC for taking captured photos from camera and a depth camera for 

capturing photos in the factory (Figure 12). The camera was setup on a ceiling-mounted crane so that 

when the crane moved in the factory, the camera would be correctly positioned to take pictures of the 

element station (Figure 13). 
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Figure 12: The mini-PC and camera installed in the factory 

 

(A)                                                                             (B) 

Figure 13  Camera setup on indoor crane of the factory. (A) 2D sketch of camera setup in the factory. (B) 

Real setup of the camera system in the factory.  

Collected datasets 

We have collected and labeled  ~6500 photos, but we used just  1340 photos for training and testing 

only due to budgetary constraints  (670 photos contained the staircase, and 670 photos contained no 

staircase). Most of the raw images did not contain a staircase (Figure 14). In addition to the labeled 

photos, 290 000 unlabeled photos were automatically collected.  
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(A)                                                                               (B) 

Figure 14 collected and labeled dataset in Rudus case. (A) A pie chart for representing ratio of captured 

photos containing staircases of interest over captured photos containing no staircase of interest (Red 

one or non-trackable). (B) Bar chart represents the number of captured photos of each type. 

 

We labeled manually 670 photos with a localized staircase  and then labeled the rebars as illustrated in 

Figure 15. Three types of rebars, including A1-A2-MODIX , X5-Y7 and U3, are illustrated shown in Figure 

16. 

 

Figure 15. Manual labeling the data. The left image shows the way we labeled the staircase in the image. 

The right image shows the rebars labeling output. 
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Figure 16.  3 tested types of rebars were A1-A2-MODIX (Red), X5-Y7 (Green) and U3(Blue). 

Validation results 

We were able to localize the staircase with a very high precision: (IOU 0.5: 1, IOU 0.7: 1, IOU 0.9: 0.96.) 

The rebar recognition resulted in acceptable F1 scores (A1-A2-MODIX: 0.79, X5-Y7: 0.69, U3: 0.63). 

Figure 17 shows the output from the algorithm. 

 

 

(A)                                                           (B)                       (C) 

Figure 17. Output from the algorithm. (A) captured photos. (B) Extracted and rotated staircase. (C) 

Detected rebars is highlighted with red, green, or blue color. 

 6.4. Challenges and learnings 
We figured out three major challenges in setting up the camera in the factory. First, due to high-safety 

requirements in the factory, cameras system must be mounted on a wall, a ceiling or a crane instead of a 

standing tripod. So, rebars look quite small in captured images. Second, the camera system is mounted 

on an indoor crane of the factory, so several captured photos have been blurred while the indoor crane is 

moving. Third, the crane is not always above staircase of interest, so inspection process is not continuous. 

Then, we cannot track rebars installment step-by-step. 

The current solution is to use deep learning methods for localizing the regions of the staircase of interest 

and recognizing its rebars. Unlike classical approaches, current supervised deep learning approaches 

requires a large number  of high-quality labeled images. Due to budgetary constraints, we were able to 
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use only 670 labeled images, which resulted in only acceptable level of rebar detection. With more images, 

the accuracy of the method could be solved. 

7. AR Application for Progress and Quality Monitoring 
We did an online survey in April 2019 to understand the needs and expectations of the AR application. 

In the survey, participants were asked to rank the importance of the following 9 features: 

 Detecting defects automatically 

 Detecting flaws immediately after completing each work step 

 Monitoring the progress of renovation (time spent at each stage) 

 Checking what has been installed or removed at each location of interest 

 Viewing the design and project schedule 

 Sharing the flaws or progress information with your colleagues 

 Generating work reports automatically 

 Displaying assembly or writing PDF instructions 

 Marking defects manually 

Based on the survey results, we selected 3 key features to implement in the AR application. First is to 

monitor the progress of renovation, including detection of current stage and calculation and visualization 

of time spent in each stage. Second is to allow users to manually mark defects. Third is to allow users to 

share information with colleagues.  

The application allows data collection and detects the work stage automatically from the picture. All 

pictures from a location are stored and shown in a timeline. The user can manually correct the 

classification of any incorrectly detected image which will be then used to further train the algorithm 

(Figure 18) 
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Figure 18. Functionality of the developed application 

8. Conclusions 
The goal of the research project, Reality Capture, was to investigate opportunities for automatic 

monitoring of progress, automatic quality checking of construction and visualization of progress utilizing 

Augmented Reality technologies. Due to limited research budget, we evaluated a few different use cases 

prioritizing use cases which have not gained a lot of attention in research literature and where data could 

be collected with inexpensive hardware. 

The results show that all use cases were possible to solve technically, although none of the use cases were 

trivial. The bottleneck was data collection. The data for machine vision does not currently exist and each 

use case requires a lot of training material if deep learning methods are used. Because there are so many 

different tasks and location types to be detected, it is very difficult to do a full-scale progress monitoring 

system by deep learning alone. The same applies to quality detection. We were able to detect and locate 
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quality issues but there are so few mistakes that it requires a lot of data collection to solve the problem 

for just one work type. We tried to analyze defect image libraries by companies, but images were taken 

inconsistently and the defects were not appropriately labeled or collected. The recent trend of using 

helmet-mounted 360 cameras  may solve the data issue but requires a lot of manual labeling work. If data 

problem can be solved, these approaches could be used to evaluate progress in absence of 3D BIM models 

for locations with standard work, such as hotel rooms, bathrooms, kitchens etc. It is unclear how much 

progress could be deduced from more complex spaces. 

The crane camera case showed promising results. It was possible to quite accurately detect the work 

phase by using Bag of Visual Words method with just a limited training sample. In future research, the 

same method could potentially be able to detect work phases inside the building with limited training 

data required as long as the visual modifications caused by the task are substantial. Even the crane camera 

implementation suffered from variable quality of data. 

As an overall conclusion, machine vision techniques seem to be ready for utilization in construction 

projects, even when BIM models are not available. Future work should be carried out to investigate more 

use cases and focus more on economic ways to collect a lot of data, perhaps as a joint effort of 

construction industry. If data can be collected and labeled in a systematic way, even currently available 

machine vision techniques could have a lot of potential and help create a digital situational awareness of 

a construction project.  

 


