

Dissertation press release**17.06.2019**

Alkali metal treatment improves the efficiency of CIGS thin film solar cells

Title of the dissertation Improving Cu(In,Ga)Se₂ solar cell absorbers based on atomic-level modeling**Contents of the dissertation** In order to provide affordable and sustainable energy for the future, solar cells with high conversion efficiency are needed. The efficiency of thin film chalcopyrite solar cells has increased remarkably in recent years. Current efficiencies for converting energy of the solar radiation into electricity surpass 23,3%. The light harvesting absorber material in chalcopyrite solar cells is Cu(In,Ga)Se₂ that can be used in thin film solar cells thanks to its high absorption of sunlight. In the case of Cu(In,Ga)Se₂ cells, the recent considerable improvements were obtained when the cells were treated with alkali metals.

The aim of this dissertation is to understand the effect of native point defects and alkali metal impurities on the atomic and electronic structure of the Cu(In,Ga)Se₂ absorber layer. Experiments indicate that light (Li, Na) and heavy (K, Rb, and Cs) alkali metal atoms have different effects. Light alkali metal atoms mostly contribute by increasing p-type conductivity, open-circuit voltage, and fill factor, while heavy alkali metal treatment improves the surface morphology and further improves solar cell parameters. According to the present calculations, these effects arise from the tendency that the light alkali metal atoms prefer to accumulate on the Cu sublattice as impurities, whereas incorporation of heavy alkali metal atoms contributes mostly by phase separation.

Field of the dissertation Engineering Physics**Doctoral candidate** Maria Malitckaya, M.Sc.**Time of the defence** 28.06.2019 at 13 (1pm)**Place of the defence** Aalto University School of Science, lecture hall E, Otakaari 1, Espoo**Opponent** Prof. Dr. rer. nat. Karsten Albe, Technische Universität Darmstadt, Germany**Custos** Professor Martti Puska, Aalto University School of Science, Department of Applied Physics**Doctoral candidate's contact information** Maria Malitckaya
Department of Applied Physics
+358449871543
maria.fedina@aalto.fi