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Multiple-Element Antennas and Antenna 
Decoupling Techniques
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Bandwidth ≈ 370 MHz
where coupling 
< -10dB

Dual-Band Massive Antenna Array for 
Small-Cell Infrastructure

48 elements @ 5GHz,
63 elements @ 15GHz

L. Li and A. Muhammad, PIMRC’16.

Bandwidth
> 4 GHz                                 
where coupling < -10 dB

Matching at 15 GHz band

Matching at 5 GHz band

240m
m

190mm
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28 GHz Phased Antenna Array Module
• Antenna under test: ULA based on a Rotman lens

6

Figure: Rotman lens integrated antenna 
array measured in near-field radiation 

pattern measurement system.
Figure: measured (solid) and simulated 

(dashed) radiation patterns of the antenna array.
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Conformal, Swallowable Capsule Antenna

7M. Md Suzan et al., EuCAP2016.

RolledAntenna element Capsule

Radiates in 
different human 

tissues

• Simulations and experiments using 
liquid human phantom showed 
excellent agreement of matching.

• Detuning due to different human 
tissues overcome by ultrawideband
matching.

• For wireless endoscope @ 433 MHz
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Electrically-Small Multi-Element 
On-Body Antenna
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Ground Plane

On-body Antenna

Antenna 1

Antenna 2

 Simulations and measurements show good agreement.
 Mutual coupling is less than -10 dB in the bandwidth of interest 

(400-500 MHz).

 For a receiver unit of the wireless capsule endoscopy 
operating at 433 MHz

Top View Back View

Liquid Phantom

A. N. Khan, master’s thesis, 2016.
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Wavetraps for Isolation Improvement of 
In-Band Full-Duplex Relay Antennas

9

M. Heino et al., IEEE Trans. Ant. Prop., 2016.

Enable dense antenna placement:
Example 1: 2x2 relay (back-to-back)
prototype w/dual-polarised patches

Receive dual-pol
antenna on the other 
side of the box



Aalto University
School of Electrical
Engineering

Wavetraps for Isolation Improvement

Fig: Measured isolation before (left) and after (right) adding wavetraps
• High isolation (>60 dB) across wide frequency band (9%)
• Can also be applied to co-planar dense patch arrays
• Can be extended to dense arrays above 6 GHz by adjusting the 

wavetrap shape and size

10M. Heino et al., IEEE Trans. Ant. Prop., 2016.
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Passive Antenna Decoupling Circuitry:                    
A Neutralization Line

11
S. Venkatasubramanian et al., EuCAP2015 

(finalist of a student paper award).
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S31 - Mutual coupling

S42 - Mutual coupling

S41 - Mutual coupling

S32 - Mutual coupling

S31 - Neut. (49 dB att.)

S42 - Neut. (52 dB att.)

S41 - Neut. (55 dB att.)

S32 - Neut. (52 dB att.)

Tradeoff between 
isolation and 
bandwidth

Isl. lv. S31 S42 S41 S32

Natural 53dB 56dB 58dB 53dB
5MHz 76dB 72dB 75dB 72dB
40MHz 61dB 65dB 67dB 63dB

Back-to-back
relay antenna

Coupler

Coupler

Attenuator & 
phase shifter

Neutralization line



Aalto University
School of Electrical
Engineering

Wideband Antenna Decoupling Network for a 
Compact Monopole Array

12L. Li et al., LAPC2015 (finalist of a best paper award).

• More than 15dB isolation improvement in 12% 
bandwidth

• Can be extended to dense array above 6GHz 
by replacing lumped components with varactor
diodes and microstrip structures.

w/o decoupling network w/ decoupling network
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Wideband Antenna Decoupling Using Resistive 
Circuitries

13S. Venkatasubramanian et al., IEEE TAP, 2017.

Antenna 1 Antenna 2

Transmission 
line 

Port1 Port2

Decoupling 
network

Matching 
network

XP

RPXC

XS

XC

XS

ΠA   

ΠT   

ΠM   

φa,la φa,la

• Transmission lines at antenna feeds 
to transform phase of mutual 
admittance.

• Resistive and reactive elements 
connected between antenna feeds 
to improve wideband isolation

Fig. 3 Measured isolation.

Fig. 1 Decoupling network schematic.

Fig. 2 Prototypes with different decoupling circuits.
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Radio Channel Modeling
at High Frequencies
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High-Frequency Channel Sounding
• Capable of sounding at <6, 

15, 28, 60, 70 and 80 and 
above 100 GHz

15

Hospital rooms

Open square

Airport
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Multi-Band Channel Sounder

16

Frequency 
range

61-65 GHz/
69-74 GHz

27-30 
GHz

14-16 
GHz

Bandwidth 4-5 GHz 3 GHz 2 GHz

Freq. sweep points 10001 10001 10001

Multipath resolution 0.2-0.25 ns 0.33 ns 0.5 ns

Max. detectable 
delay 

2000 ns 3300 ns 5000 ns

Tx/Rx (omni/horn) 
antenna

5/24 dBi
or 2/19 dBi

2/19
dBi

2/19
dBi

Max. Tx-Rx
distance

200 m 200 m 200 m

Tx/Rx height 2/2 m
or 3/3 m

3/3 m 3/3 m

K. Haneda et al., EuCAP2016.
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Multi-Frequency Channel Characterization in Helsinki 
Airport

17J. Vehmas et al., VTC Fall 2016.

• Only slight frequency-dependence can be observed in the LSPs.
• Both specular and diffuse powers decay faster as frequency increases and 

specular power decays in general much faster than diffuse power.

specular power

diffuse power
(example)

Power decay

Mean large-scale parameters

Scenario
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Comparison of Cm- and Mm-Wave Channels
PAS Comparison for indoor Environment at 2, 15, 28, 60 GHz
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2 GHz
15 GHz
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60 GHz

Coffee Room RAD Aalto

LOS LOS

U.T. Virk, EuCAP2017
(won the best student paper award).

• Measurements based PAS 
evaluation at different frequencies

• PAS comparison below and above 
6 GHz bands

28
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• Models with varying complexity and accuracy parameterized
1. Fixed reference model (wrt free-space loss at 1m)
2. Floating intercept model (like ITU-R Hexagonal cell model)
3. Modified ITU-R M.2135 two-ray model (LOS) and Manhattan grid model (NLOS)

Frequency-Agile Pathloss Models
• Derived from channel sounding in urban street canyons 

of three cities for the frequency range of 0.8-60.4 GHz

19K. Haneda et al., IEEE Trans. Ant. Prop., May 2016.
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High Frequency Channel Simulations Using 
Optical Measurements of the Environment 

Open square in Helsinki
3 million points

20
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High Frequency Channel Simulations
• Points in the point cloud                                         

produce
– Specular reflections
– Diffuse scattering
– Attenuation loss due to shadowing

• Material parameters (e.g. permittivity)
optimized to fit measured channel impulse 
responses

21

Specular +            Diffuse =      Overall channel

Street canyon @ 
Aalto University
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Diffuse Scattering Model

22
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• Optimization on top of the specular 
components

• Scattering from each point calculated 
with single-lobe directive model [1]

• Material-dependent parameters S and 
αR tuned based on measurements

Higher αR  more directive scattering
[1] V. Degli-Esposti, et al., "Measurement and modelling of scattering from buildings,”

IEEE Trans. Ant. Prop., vol.55, no.1, pp.143-153, Jan. 2007.
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• All relevant propagation mechanisms considered
- Specular reflections, scattering, diffraction, shadowing

• Common indoor materials can be modeled with a single permittivity value

• Very good prediction accuracy in both LOS and NLOS conditions

Example: Indoor 60 GHz Channels

J. Järveläinen et al., IEEE Trans. Ant. Prop., 2016.

LOS NLOS Cafeteria

33
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Mm-Wave Line-of-Sight Probability 
Evaluation Using Point Clouds

J. Järveläinen et al., IEEE Wireless Commun. Lett., 2016.

• Accurate description of environment allows very realistic modeling

• Fresnel zones used for shadowing detection  frequency dependent

• 3 scenarios: Open square, shopping mall, office

34
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Orthogonality of Mm-Wave MU-MIMO Channels

• Sparse multipaths, some scatterers are visible for multiple sites and users  Inter-link correlation

• When inter-user distance > twice of shadowing correlation distance, the average sum-rate of MF 
achieve 80% of i.i.d. sum-capacity

S. Nguyen et al., VTC Spring 2015.

Measurement site (open square, 61 GHz)

35



Aalto University
School of Electrical
Engineering

Multi-User and Distributed Channels at
Millimeter-Wave

• Example: coexistence analysis of distributed 
channels using point cloud channel 
simulations at 60 GHz
– Revealed that single-mode beam focusing 

works as robust as eigenbeamforming.

Simulated 
indoor room

Haneda et al., VTC-Spring 2015.

Gain focusing Eigenbeamforming

Dashed: w/ co-channel intf.
Solid: w/o co-channel intf.

w/o co-channel intf.

w/ co-channel intf.

36
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• Far-field blockage is more noticeable at higher frequency

4

Human-Channel Interaction

Body rotation

Tx height

Measurements of 15 human 
body samples

Tx 
antenna

Rx 
antenna

Rx
side

Tx
side
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• A simple model to calculate the body blockage loss

Human-Channel Interaction

TX RX

5



Aalto University
School of Electrical
Engineering

• Far-field blockage is more noticeable at higher frequency

6

Human-Channel Interaction

Blockage vs Orientation of human body Blockage vs transmit antenna height

We made a model that reproduces median blockage losses 
over 15 body samples
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Does a GSCM Reproduce the Reality?
• Validation of small-scale fading characteristics for a 

stochastic channel model (WINNER in our case)

30

Step 1: Multi-frequency channel 
sounding, point cloud-based 

channel simulations

Step 2: 3-D Channel model 
parameterization

Step 3: Validation, i.e., 
comparison of channel model 

output with measurements

✓

✓

?

Comparison does not
always go well 
✓ Angular and delay    

spreads
✓ # of clusters and 

sub-paths
✓ Max excess delay
✗ Eigenvalue 

distributions of 
MIMO channels with 
large antenna array
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Eigenvalue Distributions of MIMO Channels
• Array configurations at the BS and MS:

– The same uniform horizontal planar array
– Half-wavelength dipole antennas
– Half-wavelength spacing btw antennas

31

2x2 planar array at BS and MS 7x7 planar array at BS and MS

Solid lines: point cloud
Dashed lines: WINNER
(1 or 20 rays)



Aalto University
School of Electrical
Engineering

Over-the-Air Antenna Test Methods

32
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• Also more noticeable self-body blockage effects

7

Antenna-Human Interaction

Simulations at 28 GHz

Electric field 
distribution

Simulation
model

Radiation
pattern

A patch antenna on a mobile phone-sized ground plane
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Figures-of-Merit
• Evaluation metrics of a mobile phone antenna element  

and array in an operational (multipath) environment 

PoPr

𝐺𝐺e =
𝑃𝑃r
𝑃𝑃o

Multiple plane 
waves

w/ isotropic
antenna

w/ antenna
under rest

Mean effective gain Diversity gain

Omni-directional
pathloss

Vaughan and Andersen, TVT, 1987.
Taga, TVT, 1990.
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• An evaluation metric of a mobile phone antenna element  
and array in an operational (multipath) environment 

35

Array Gain

Pr

Assumptions in our study:
- Single RF chain
- Ideal maximum-ratio combining

RF 
chain

Vaughan and Andersen, Channels, Propagation and 
Antennas for Mobile Communications, IEE 

Electromagnetic Series 50, 2003.

Multiple plane 
waves

Po

𝐺𝐺e =
𝑃𝑃r
𝑃𝑃o

Which branch 
to choose as a 

reference?

Gain may be different, 
depending on a chosen 

reference branch.
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• An evaluation metric of a mobile phone antenna array in 
an operational (multipath) environment 

36

Total Array Gain

Pr

Assumptions in our study:
- Single RF chain
- Ideal maximum-ratio combining

RF 
chain

Multiple plane 
waves

Po

𝐺𝐺e =
𝑃𝑃r
𝑃𝑃o

w/ idealistic 
isotropic
antenna

Gain is uniquely defined, 
regardless of branch 

power imbalance.

Haneda et al., VTC Spring-2018 
and EuCNC ‘18.
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• Uniform antenna array (ULA)
– Eight patch antennas at a corner of a smart phone, radiating 

slanted polarization to the ground at a vertical posture of a phone

37

Mobile Phone Antenna Arrays at 60 GHz (1)

Chassis:
150 x 75 x 8 mm3

Slanted-
polarization 
antennas

Vertical-
polarization 
antennas

Inter-element spacing: 
half-wavelength at 60 GHz
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• Distributed array (DA)
– Four patch antennas at two top corners of a smart phone

Mobile Phone Antenna Arrays at 60 GHz (2)

Chassis:
150 x 75 x 8 mm3

Slanted-
polarization 
antennas

Vertical-
polarization 
antennas

38
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Finger Effects

39M. Heino et al., EuCAP2016.

• 20 dB reduction of the broadside gain at 60 
GHz; more energy spread to other directions
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• DA outperforms ULA in the total array gain and capacity.

Total Array Gain
Uniform linear array (ULA) vs. distributed array (DA)

• BS: single dual-pol omni-antenna, MS: Maximum radio combining

40

Uniform linear array Distributed array
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List of Publications for High Frequency 
Antennas, Channels and Systems
• Tutorials, invited talks and magazine articles

– K. Kusume et al., “Radio propagation modeling for 5G mobile and wireless 
communications,” IEEE Communications Magazine, vol. 54, no. 6, pp. 144-151, 
June 2016.

– K. Haneda, “Millimeter-Wave Propagation and Channel Measurements – What is 
done and what is undone,” Session panelist of the EuCAP2016 Workshop on key 
enabling technologies on antenna and channel models for an effective mmWave 5G 
deployment, April 2016.

– K. Witrisal et al., “High-accuracy localization for assisted living: 5G systems will turn 
multipath channels from foe to friend,” IEEE Signal Processing Magazine, vol. 33, 
no. 2, pp. 59–70, March 2016.

– K. Haneda, “Channel models and beamforming at millimeter-wave frequency 
bands,” IEICE Transactions on Communications, vol. E98-B, no. 5, May 2015 (won 
the best tutorial paper award).

– M. Heino et al., “Recent advances in antenna design and interference cancellation 
algorithms for in-band full-duplex relays,” IEEE Commun. Mag., vol, 53, no. 5, pp. 
91–101, May 2015.

– K. Haneda, “Channel model: 5G air interface,” Session panelist of the Brooklyn 5G 
Summit, New York, April 2015. 41
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List of Publications for High Frequency 
Antennas, Channels and Systems
• Antennas and antenna measurements (selected papers)

– K. Iwamoto et al. “Design of an antenna decoupling scatterer for an inband full-
duplex collinear dipole array,” IEEE Trans. Ant. Prop., vol. 66, no. 7, pp. 3763-3768, 
July 2018.

– S. Venkatasubramanian et al., “Impact of using resistive elements for wideband 
isolation improvement,” IEEE Trans. Ant. Prop., vol. 65, no. 1, pp. 52-62, Jan. 2017.

– L. Li et al., “Compact dual-band antenna array for massive MIMO,” 27th Int. Symp. 
Personal, Indoor and Mobile Radio Commun., Valencia, Spain, Sep. 2016. 

– A. Khatun et al., “Experimental verification of a plane-wave field synthesis technique 
for MIMO OTA antenna testing,” IEEE Trans. Ant. Prop., vol. 64, no. 7, pp. 3141–
3150, July 2016.

– M. Heino et al., “Finger effect on 60 GHz user device antennas,” 10th European 
Conference on Antennas and Propagation, Davos, Switzerland, April 2016.

– M. Md. Suzan et al., “A conformal antenna for capsule endoscopy: Design, analysis, 
and experimental validation,” 10th Euro. Conf. Ant. Prop., Davos, Switzerland, April 
2016.

– M. Heino et al., “Design of wavetraps for isolation improvement in compact in-band 
full-duplex relay antennas,” IEEE Trans. Ant. Prop., vol. 64, no. 3, pp. 1061–1070, 
March 2016. 42
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List of Publications for High Frequency 
Antennas, Channels and Systems
• Channels and measurements (selected papers)

– S. L. H. Nguyen et al., “On the frequency dependency of radio channel's delay 
spread: Analyses and findings from mmMAGIC multi-frequency channel sounding,” 
12th European Conf. Ant. Prop. (EuCAP 2018), London, UK, April 2018.

– S. L. H. Nguyen et al., “Comparing radio propagation channels between 28 and 140 
GHz bands in a shopping hall,” 12th European Conf. Ant. Prop. (EuCAP 2018), 
London, UK, April 2018.

– J. Jarvelainen, K. Haneda and A. Karttunen, “Indoor propagation channel simulations 
at 60 GHz using point cloud data,” IEEE Trans. Ant. Prop., pp. 4457-4467, Aug. 2016.

– K. Haneda, N. Omaki, T. Imai, L. Raschkowski, M. Peter and A. Roivainen, 
“Frequency-agile pathloss models in urban street canyons,” IEEE Trans. Ant. Prop., 
vol. 64, no. 5, pp. 1941–1951, May 2016.

– S. Hur, S. Beak, B. Kim, Y. Chang, K. Haneda, A. F. Molisch, T. S. Rappaport and J. 
Park, “Proposal on mmWave Channel Modeling for 5G Cellular System,” IEEE J. Sel.
Areas Commun., vol. 10, no. 3, pp. 454-469, April 2016.

– C. Gustafson, K. Haneda, S. Wyne, and F. Tufvesson, “On mm-wave multi-path 
clustering in a conference room environment,” IEEE Transactions on Antennas and 
Propagation, vol. 62, no. 3, pp. 1445-1455, Mar. 2014.
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List of Publications for High Frequency 
Antennas, Channels and Systems
• Systems (selected papers)

– K. Haneda et al., “Total array gains of polarized millimeter-wave mobile phone 
antennas,” 27th European Conf. Networks Commun. (EuCNC 2018), Ljubljana, 
Slovenia, June 2018.

– A. F. Molisch et al., “Hybrid beamforming for massive MIMO - a survey,” IEEE 
Wireless Communications Magazine, vol. 55, no. 9, pp. 134-141, September 2017.

– K. Haneda et al., “Attainable capacity of spatial channels: a multiple-frequency
analysis,” 2016 Global Commun. Conf. (Globecom’16) Workshop on Mobile
Commun. for High Frequency Bands, Washington DC, Dec 2016.

– J. Jarvelainen et al., “Evaluation of mm- wave line-of-sight probability with point 
cloud data,” IEEE Wireless Commun. Lett., vol. 5, no. 3, pp. 228–231, June 2016.

– S. L. H. Nguyen et al. “On the mutual orthogonality of millimeter-wave massive 
MIMO channels,” 81st Vehicular Technology Conference (VTC2015-Spring), 
Glasgow, Scotland, May 2015. 

– K. Haneda et al., “Spatial coexistence of millimtre-wave radio links in an indoor 
environment,” 81st Vehicular Technology Conference (VTC2015- Spring), Glasgow, 
Scotland, May 2015.
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