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Multiple-Element Antennas and Antenna
Decoupling Techniques

Aalto University
School of Electrical 4
Engineering



Dual-Band Massive Antenna Array for

Small-Cell Infrastructure

Matching at 5 GHz band
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48 elements @ 5GHz,
63 elements @ 15GHz

L. Li and A. Muhammad, PIMRC'16.
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28 GHz Phased Antenna Array Module

 Antenna under test: ULA based on a Rotman lens

Realized gain [dBi]
(8]
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Figure: Rotman lens integrated antenna Azimuth angle [deg]
array measured in near-field radiation Figure: measured (solid) and simulated
pattern measurement system. (dashed) radiation patterns of the antenna array.
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Conformal, Swallowable Capsule Antenna

* For wireless endoscope @ 433 MHz
Rolled

Different tissues

—Colon
- = =|ntestine
== Stomach A

Antenna element

Capsule

B | ~ Radiatesin
s | different human
3 3 ‘ tissues

-60
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Frequency [MHz]

Simulations and experiments using
liquid human phantom showed
excellent agreement of matching.

Detuning due to different human
tissues overcome by ultrawideband

Aalto University matCh|ng .
School of Electrical
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Wavetraps for Isolation Improvement of
In-Band Full-Duplex Relay Antennas

Enable dense antenna placement:
Example 1: 2x2 relay (back-to-back)
prototype w/dual-polarised patches

- Receive dual-pol
antenna on the other
side of the box

M. Heino et al., IEEE Trans. Ant. Prop., 2016.
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Wavetraps for Isolation Improvement
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(a) Reference relay (b) Prototype with wavetraps

Fig: Measured isolation before (left) and after (right) adding wavetraps

High isolation (>60 dB) across wide frequency band (9%)
Can also be applied to co-planar dense patch arrays

Can be extended to dense arrays above 6 GHz by adjusting the
wavetrap shape and size

A Adlto University M. Heino et al., IEEE Trans. Ant. Prop., 2016.
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Port-to-port Coupling (dB)

Passive Antenna Decoupling Circuitry: i
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Wideband Antenna Decoupling Network for a
Compact Monopole Array

Autenna 1 Autenm 2 w/o decoupling network . w/ decoupling network
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 More than 15dB isolation improvement in 12%
bandwidth

 Can be extended to dense array above 6GHz
by replacing lumped components with varactor
diodes and microstrip structures.

alto Universi
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Wideband Antenna Decoupllng Using Re5|st|ve
Circuitries
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.......... _ l I _
: Xc| |: L Re __ 1 ] |xc :
: : Decoupling : : : : : : : .
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Figo. 1 Decoupling network schematic.
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Aalto University
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Radio Channel Modeling
at High Frequencies
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Multi-Band Channel Sounder NOKIA

Frequency 61-65 GHz/ 27-30 14-16
range 69-74 GHz GHz GHz

Rx horn antenna Tx bicone antenna Bandwidth 4-5 GHz 3 GHz 2 GHz
(24 dBi gain) (5 dBi gain)

WRI15

waveguide RF signal 61-65 GHz

Freq. sweep points 10001 10001 10001

Multipath resolution 0.2-0.25ns  0.33ns 0.5ns

converier

» "~ Down

2

Tripod Max. detectable 2000 ns 3300 ns 5000 ns
Rotator

IF signal

gumen2] CONVETtET

2.2-6.2 GHz delay
Control B Vector network W -—25dB Tx/Rx (omni/horn) 5/24 dBi 2/19 2/19
PC I analyzer |0 MHz syne | ap- antenna or 2/19 dBi dBi dBi
Max. Tx-Rx 200 m 200 m 200 m
500 m distance
optical cable ~ Tx/Rx height 2/2m 3/3m 3/3m

or3/3m

K. Haneda et al., EUCAP2016.
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Multi-Frequency Channel Characterization in Helsinki
Airport

Power decay

™ -80 T T T = 15 GHz propagation paths|
i x s = 28 GHz propagation paths|
= 60 GHz propagation paths|
—Linear fit for 15 GHz paths|
. . [~Linear fit for 28 GHz paths|

—Linear fit for 60 GHz paths|

ey
)
[==]

Path gain [dB]
B

-160 -

-180

~ specular power

x Iml 200 : : : -
0 200 400 600 800 1000 1200
Delay [ns]
Mean large-scale parameters 80
—Measured PDP
90 = Diffuse power model: P, =-110.8 dB, 3, = 136.2 ns
Frequency Delay Azimuth Elevation 100k I
band spread [ns] spread [°] spread [°] o d |ﬂ:use power
o-110r
15 GHz 42.6 19.5 7.0 =
LOS 28 GHz 34.4 19.6 9.4 g 120 (example)
60 GHz 38.7 17.6 5.6 130+
15 GHz 65.8 30.3 8.4 140§
NLOS 28 GHz N/A N/A N/A 150 . . . | | |
60 GHz 57.1 29.7 9.3 0 200 400 600 800 1000 1200

Delay [ns]

* Only slight frequency-dependence can be observed in the LSPs.
» Both specular and diffuse powers decay faster as frequency increases and
specular power decays in general much faster than diffuse power.

alto Universi
A Senool of Electrica J. Vehmas et al., VTC Fall 2016. 17
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Normalized Gain [dB]

Comparison of Cm- and Mm-Wave Channels
PAS Comparison for indoor Environment at 2, 15, 28, 60 GHz

Measurements based PAS
evaluation at different frequencies

PAS comparison below and above
6 GHz bands
Tx1Rx1 Tx3Rx1
0 0
-10F S /A\ 'ﬂ_]| -10F . S
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-50 28 GHz}; Z .50 28 GHz};
— 60 GHz — 60 GHz
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Aalto University :
A scrooioieecnca U.T. Virk, EUCAP2017 28

Engineering (won the best student paper award).



Frequency-Agile Pathloss Models @j

« Derived from channel sounding in urban street canyons

of three cities for the frequency range of 0.8-60.4 GHz

-80 — - -Fixed reference |
- -Floating intercept
90! —Proposed M.2135|
0 * Helsinki LOS
° | FF - Helsinki NLOS
- -100 I e
ro | LOS model N
= |
< -1107 | NLOS model (beyond’
Qtt_i I_ a corner at 150.3 m)
120} R )
-130

150

200

Tx-Rx distance [m]

Models with varying complexity and accuracy parameterized
1. Fixed reference model (wrt free-space loss at 1m)
2. Floating intercept model (like ITU-R Hexagonal cell model)
3. Modified ITU-R M.2135 two-ray model (LOS) and Manhattan grid model (NLOS)

K. Haneda et al., IEEE Trans. Ant. Prop., May 2016. 19
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High Frequency Channel Simulations Using
Optical Measurements of the Environment

Open square in Helsinki
3 million points

Aalto University
School of Electrical 20

Engineering



Amplitude [dB]

High Frequency Channel Simulations

e Points in the point cloud | Street canyon @

 Material parameters (e.g. permittivity)

-60

70+

.80

90+
-100¢
-110
-120¢
-130

produce - Aalto University

— Specular reflections
— Diffuse scattering
— Attenuation loss due to shadowing

optimized to fit measured channel impulse
responses

Specular + Diffuse =  Overall channel
- : -60 ‘ : -60 : :
—Measured —Measured —Measured
—Predicted (spec.) -70¢ —Predicted (diff.){ =70} —Predicted (spec. + diff.) |
= | 8% '
3 o 90 |
S =] ‘
=_ =-100¢
£ £
Z- < -110
- -120¢
. ) | R -130 . !
0 50 100 150 0 50 100 150 0 50 100 150
Delay [ns] Delay [ns] Delay [ns]

A Aalto University
School of Electrical
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Diffuse Scattering Model

« Optimization on top of the specular
components

» Scattering from each point calculated
with single-lobe directive model !

« Material-dependent parameters S and

ag tuned based on measurements

dS

B (@jz'dScoséﬁ '(l+cosz'(i)2 180 T T
fifs Fa, 2 ar Higher ag = more directive scattering

A [1] V. Degli-Esposti, et al., "Measurement and modelling of scattering from buildings,”
IEEE Trans. Ant. Prop., vol.55, no.1, pp.143-153, Jan. 2007. 22



Amplitude [dB]

Amplitude [dB]

Example: Indoor 60 GHz Channels

LOS

—Measured
- = Predicted

-80

P al | e
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» All relevant propagation mechanisms considered
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L e
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T1

- Specular reflections, scattering, diffraction, shadowing

« Common indoor materials can be modeled with a single permittivity value

» Very good prediction accuracy in both LOS and NLOS conditions

Aalto University
School of Electrical
Engineering
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J. Jarvelainen et al., IEEE Trans. Ant. Prop., 2016.



Mm-Wave Line-of-Sight Probability
Evaluation Using Point Clouds

= Caleulated
.08 —]TU-R Ul\_.ll. (Q‘i}
= = =Exponential, (3)
= | -==Linear, (4)
Z 06 -—Eq. (1) from [4]
g <
=0.4 .
%)
Q o
=02 O
U L L L L L J
0 20 40 60 80 100 120

Link distance [m]

» Accurate description of environment allows very realistic modeling
* Fresnel zones used for shadowing detection - frequency dependent
» 3 scenarios: Open square, shopping mall, office

J. Jarvelainen et al., IEEE Wireless Commun. Lett., 2016.

Aalto University
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Orthogonality of Mm-Wave MU-MIMO Channels

Measurement Slte (Open Square, 61 GHZ) MPCs of Tx1-Rx50 and Tx1-Rx57 links on route 3

» Sparse multipaths, some scatterers are visible for multiple sites and users - Inter-link correlation

« When inter-user distance > twice of shadowing correlation distance, the average sum-rate of MF
achieve 80% of i.i.d. sum-capacity

8 20 1
E ~~
o 2
t— (
= § 6 7':, 0.8
S ® £
g 2 5 2 5, |
Q= 4 2 5 D=0.54
S e < © 04 .| =4 users
g g 2 g 48 users
£ 3 S 02t i | -m=12 users
Q 0 7 - 16 users
0 10 20 30 10 20 30 % " 1072 30 40 50 6
Inter-user distance (m) Condition number

Inter-user distance (m)

A Aalto University S. Nguyen et al., VTC Spring 2015.

School of Electrical
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Multi-User and Distributed Channels at
Millimeter-Wave

Simulated
« Example: coexistence analysis of distributed indoor room
channels using point cloud channel Rx

. . W Tx4
simulations at 60 GHz i A7,

— Revealed that single-mode beam focusing Tx1

vl

works as robust as eigenbeamforming.

Haneda et al., VTC-Spring 2015.

Dashed: w/ co-channel intf.

10—+ _ _ .10 ‘ ‘ w/o co-channel intf.

N —TRI11 Solid: w/o co-channel intf. N —TR11 ~

@& g —TR22 @ g —TR22 —

5 | —TR33 5 | —TR33 <

o o ..............

S S | e

S 4 g I e i

= | A = f: _

c c .  F : w/ co-channel intf.

c 2 | , - c 2§ ; ~

5 Gain focusing | 5 Eigenbeamforming
% o5 1 15 2 25 3 % 05 1 15 2 2.5 3

Antenna aperture size [\7] Antenna aperture size [\7]
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Human-Channel Interaction

» Far-field blockage is more noticeable at higher frequency

Measurements of 15 human
body samples \ <

hg,=1.87m

Vector Network Analvzer (VNA)

Signal Generator (SG) . -
% o
e I'- %:% A
oy L = e A
LO - '
IF

RF Splitter 30 dB Amplifiers

Measurement Room




Human-Channel Interaction

« A simple model to calculate the body blockage loss

-~ Diffraction
d wc‘g.._\“pathc
.- 1 2 ~a o
—® RX
. Wy ,/"
\‘*\ /," Diffraction
LT Path D

Human body top view
(absorbing screen)

7T~ Diffraction
- h, ~s-~ path A
” a s
7T dy dy "o
—» RX
hy
AN _.-~  Diffraction
LT Path B

Vv H
EQKED — EDKED + EDKED

Human body side view
Aalto University b bi
A School of Electrical (a sSoroimng SCI'eeIl) 5
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Blockage loss (L”B) [dB]

Human-Channel Interaction

» Far-field blockage is more noticeable at higher frequency

Blockage vs Orientation of human body Blockage vs transmit antenna height
30 T T T T T T T T T 35
Solid: Measured, Dashed: QKE Predicted =15 GHz — 8 GHz = 60 GHz
25 . S : ' : '
aa)
= el
20 P
=
= 20t
15 2
— 15_
:J‘_
10 20
S 10}
5t ——15GHz ——-28 GHz ——-60 GHz m .
DI Y
oL I 1 { 1 1 [ I { Solid: Measured, Dashed: QKE Predicted \
= = [’] i i i 1 1 1 i I i
g | 0 e ey 2 T S O 187 202 217 232 247 262 277 292 3.07
Azimuth angle [¢ ] TX height (hT‘{) [m]

We made a model that reproduces median blockage losses
over 15 body samples

Aalto University
School of Electrical 6
Engineering



Does a GSCM Reproduce the Reality?

« Validation of small-scale fading characteristics for a
stochastic channel model (WINNER in our case)

Step 1: Multi-frequency channel / _ \
sounding, point cloud-based Comparison does not

channel simulations always go well ®

Angular and delay
Spreads
Step 2: 3-D Channel model # of clusters and
parameterization sub-paths
‘ Max excess delay
X Eigenvalue
Step 3: Validation, i.e., distributions of
comparison of channel model 7 MIMO channels with
output with measurements large antenna array/
Aalto University
A School of Electrical

Engineering
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Eigenvalue Distributions of MIMO Channels
« Array configurations at the BS and MS:

— The same uniform horizontal planar array | gqid lines: point cloud
— Half-wavelength dipole antennas Dashed lines: WINNER

— Half-wavelength spacing btw antennas (1 or 20 rays)
7X7 planar array at BS and MS

S LOS

et LOS

1st

057

CDF

2nd

3rd

10 -10 0 10 20 30
Eigenvalue of HH+[dB]

-30 -20 -10 0
Eigenvalue of HH+[dB]




A

Over-the-Air Antenna Test Methods

Aalto University
School of Electrical

Engineering
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Antenna-Human Interaction

* Also more noticeable self-body blockage effects
A patch antenna on a mobile phone-sized ground plane

Simulation
model

Radiation z B =
pattern Er I ;

-7.25 :
-8.5 Al
-9.75

-11
-12.3
=1lD, 5
-14.8

-16
il 0B
-18.5
-19.8

I

26,4

227
12,1
15.5
118
g.1a
4,85
0,909
2,73
-6.36
-10

Electric field

distribution
1. o €
A e Simulations at 28 GHz .

Engineering



_ _ Vaughan and Andersen, TVT, 1987.
Figures-of-Merit Taga, TVT, 1990.

« Evaluation metrics of a mobile phone antenna element
and array in an operational (multipath) environment

Mean effective gain Diversity gain
Multiple plane ) =
waves PN . _g
,"\ —__"%”\ Q>J
/i\\ L -C_.|=U
w/ antenna < D w/ isotropic £
under rest Py o antenna 3

-2 . |
G — i 1020 10 0 10
e _ Gain [dB]
! Omni-directional

Aalto University
School of Electrical pathIOSS

Engineering 34




Array Gain

* An evaluation metric of a mobile phone antenna element
and array in an operational (multipath) environment

Multiple plane  \ ... Assumptions in our study:
waves - Single RF chain
- ldeal maximume-ratio combining

Gain may be different,
depending on a chosen
reference branch.

RF
chain

Which branch
to choose as a
reference?

Aalto University Vaughan and Andersen, Channels, Propagation and
A ECh-OOl of Electrical Antennas for Mobile Communications, IEE
e Electromagnetic Series 50, 2003. 35



Total Array Gain

* An evaluation metric of a mobile phone antenna array in
an operational (multipath) environment

Multiple plane  \ ... Assumptions in our study:
waves X - Single RF chain

- ldeal maximume-ratio combining

1 \
\ \
\ N
1 A
1
l
’
// \\
_-
Pid %
1
ad /
’
7
.
-
-
_-

/\\\ PO
| o Gain is uniquely defined,
W_/ Ideall_StIC regardless of branch
Isotropic power imbalance.
antenna RF
chain
A alto University Haneda et al., VTC Spring-2018
Engineering and EuCNC ‘18. 36



Mobile Phone Antenna Arrays at 60 GHz (1)

« Uniform antenna array (ULA)

— Eight patch antennas at a corner of a smart phone, radiating
slanted polarization to the ground at a vertical posture of a phone

Slanted- Inter-element spacing:
polarization —___ elength at 60 GHz

antennas

Vertical-
polarization
antennas

School of Electrical

A Aalto University Chassis:
Engineering 150 x 75 x8 mm3 37



Mobile Phone Antenna Arrays at 60 GHz (2)

» Distributed array (DA)
— Four patch antennas at two top corners of a smart phone

Vertical-\E
polarization ‘L.

antennas

Chassis:
150 x 75 x 8 mm3

anted-
polarization
antennas

Aalto University
School of Electrical
Engineering



Finger Effects

NN
N l‘“"
VAR \ m‘i L‘t‘*s

o 20 dB reduction of the broadside gain at 60
GHz; more energy spread to other directions

A

Aalto University
School of Electrical
Engineering
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Total Array Gain
Uniform linear array (ULA) vs. distributed array (DA)

DA outperforms ULA in the total array gain and capacity.

Total array gain [dB]

Uniform linear array Distributed array

A ) 20
O,
= ML
g) I - oy ;‘ ;‘,U 1
>, (i, ,'\," AL

L g MW*HMMMMW *M
Ll C_U I\i”*w;'r ik
i T 7
O
- | | |
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Mobile location index Mobile location index

BS: single dual-pol omni-antenna, MS: Maximum radio combining

A

Aalto University
School of Electrical
Engineering 40



List of Publications for High Frequency
Antennas, Channels and Systems

e Tutorials, invited talks and magazine articles

— K. Kusume et al., “Radio propagation modeling for 5G mobile and wireless
communications,” IEEE Communications Magazine, vol. 54, no. 6, pp. 144-151,
June 2016.

— K. Haneda, “Millimeter-Wave Propagation and Channel Measurements — What is
done and what is undone,” Session panelist of the EUCAP2016 Workshop on key
enabling technologies on antenna and channel models for an effective mmWave 5G
deployment, April 2016.

— K. Witrisal et al., “High-accuracy localization for assisted living: 5G systems will turn
multipath channels from foe to friend,” IEEE Signal Processing Magazine, vol. 33,
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